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CHAPTER 1. BASIC EQUATIONS

The problem of phase change occurs quite regularly in engineering

problems dealing with permafrost and seasonally frozen ground, thermal

storage systems for solar energy, the freezing of food or biological mater-

ial, and the solidification or melting of metals. If the system is near

the phase change temperature, a small change in the thermal regime may S

cause significant melting or solidification.

During a melting or freezing process, the system will be divided into

regions separated by a phase change interface (or region), which is usually V

at the phase change (fusion) temperature. In general, and certainly for

soil systems including permafrost, the thermal properties of the frozen and

unfrozen regions are different, but are not strong functions of temperatureN

for each individual phase. The transient nature of certain quantities, ,'

such as the surface temperature, the boundary heat fluxes, and the location

of the phase change interface is of particular interest. The concepts of

solid and liquid relate to the thermodynamic state of the water (or other %

liquids) contained in the pores of a system, if a porous medium is being

considered.

In this monograph, the first chapter develops the important basic

equations and presents some justification for ignoring the effects of con-

vection. S

Chapters 2-4 deal with problems that can be expressed in plane (Car-.

tesian) coordinates. These problems are further divided into boundary con-

ditions of temperature, prescribed heat flux, and surface convection. F

Chapter 5 examines some plane geometries involving three-dimensional

freezing or thawing. The quasi-steady method allows a comprehensive set of

design graphs to be presented for the phase-change location as a function

of time.
.

Chapters 6 and 7 deal with problems in the cylindrical and spherical

coordinate systems, respectively. For cylinders, design curves are pre-

sented for phase change around horizontal cylinders.

No attempt has been made to include the extensive literature of numer-

ical solutions to phase-change conduction problems; this is due to

O00



space limits rather than a judgment on the value of numerical methods. In

any event a thorough understanding of the basic physics of the problems

must precede the application of numerical methods.

Many of the applications have been directed at water/ice soil-systems,

but it should be clear that the basic solutions can be applied to such di-

verse areas as metallurgy, biological systems, solar latent heat methods,

and preservation of food.

1.1 THE NATURE OF THE THERMODYNAMIC SYSTEM

Before any equations or physical laws are discussed, the thermodynamic

system being considered must be defined. In most cases it is possible to

consider a material as a continuum, on a macroscopic basis (i.e. on a size

level above that of atomic dimensions). Thus we can consider the proper-

ties of a substance at a "point" by considering a finite volume of mate-

rial, large enough to contain sufficient atoms for an average property to

have meaning, yet small enough so that the concept of a mathematical point

is valid. This is the usual concept of a continuous material with thermo-

dynamic properties defined for a given spatial reference frame.

A porous material differs from a continuous material in that its

structure is quite nonhomogeneous when viewed from the usual macroscopic

level. Thus a material may consist of a framework or skeleton of solid ma-

terial enclosing numerous voids. These voids may be filled, or partially

filled, with fluids or other solids. An important example Is a soil system

consisting of a mineral skeleton whose voids may contain air, water, water A -

vapor, ice, hydrocarbons, or various solute solutions.

The nonhomogeneous structure ol a porous material can be considered

explicitly or the material can be idealized as a continuum. In the latter

case we consider a finite volume of matter, considerably larger than the

molecular scale, but still small enough to qualify as a mathematical point.

Over this volume the properties of the different constituents can be spa-

tially averaged to arrive at an average property of the porous system valid

at a point located at the center of the volume. The concept is analogous <a.

to the definition of a macroscopic property of a substance made up of atoms 'a.,

and molecules, but the size scale of the averaging volume is larger. This

approach is valid as long as the size of the volume is small enough that 400

the point values of the properties have some meaning.

2
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When porous systems are to be considered, the basic equations for a

continuum will be considered valid, with the average properties of the

porous material used. The energy equation for a continuum will be

considered below, followed by a discussion of its applicability to porous

materials.

1.2 GENERAL ENERGY EQUATION FOR A CONTINUUM

With fundamental laws, it is possible to write a general equation for

the temperature of a body at any point and time. A thermodynamic analysis

requires that we select the boundaries of the system we wish to investigate

and account for all the energy crossing the boundaries and generated within

the system. The net flow of energy into such a system in a given time S

interval must be exactly equal to the change in the stored energy in the

system.

Consider an element of volume dV having side lengths dx, dy, and dz,

as shown in Figure 1.1. The faces forming the boundaries of this volume

are fixed in space; however, these are not physical boundaries and both

energy and mass may cross them. &
The first law of thermodynamics applied to this system may be written

(see Nomenclature at end of chapter) in the form

Q-W+ (=i - Eo ) +Qg AE (.1)
W5

dz

dy "z

(X, YZ) 7d.

'
dy

y %

Figure 1.1 Thermodynamic system for
X general energy equation.
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where

Q - the net heat transferred across the boundaries
W = the net mechanical work across the boundaries

Ei, Eo = the energies, in all forms, carried into and out of the ,

system, with the mass flow #W

Qg = the energy developed within the system by electrical,

chemical, magnetic, nuclear, etc., means

6Es = the change in stored energy.

The time interval over which our observations will be made is dt. The face

perpendicular to the x axis and closest to the origin passes through the A

point x, y, z, and the velocity components of the medium at this point are

u, v, and w, respectively.

1.2.1 Energy Transfer without Mass Transfer

Energy transfer across the boundaries in the form of heat may take

place by conduction and by radiation. The energy transfer by conduction is

computed by applying Fourier's equation to each of the three directions.

The net energy into the system will he the sum of the energies into the "

system in each of the three directions. Fourier's law (or Biot's law) of

conduction for the x-direction is
3T

qx= -k A (1.2)

This law states that the rate of energy flow in the direction of the V,

temperature drop qx is proportional to the area A and the temperature

gradient aT/ax. The proportionality coefficient kx is the thermal

conductivity associated with the x direction. The negative sign is a

convention so that heat flow in the direction of decreasing temperature is

positive.

If Fourier's equation is applied to the face perpendicular to the

x-axis and passing through the point x, y, z, the energy transfer by

conduction Qcx in the time dt is

dQ -k dy dz -TxX X a

The energy transfer by conduction in the x direction at x + dx is the a%*

conduction at x plus the change in conduction in the distance dx:

dQc(x -k + a (-k -)dxj dy dz dt •x + dx) a

4



The net conduction of energy into the system in the x direction is the

difference between these two values:

dQxc -a (kx LT dV dt •

Similar equations may be written for dQyc and dQzc and the net energy

transferred into the system by conduction is
- T a 3T a aT (1.3

dQ [x (k x) + (- y k ) !-+ i- (k !-)] dV dt

The energy transfer by the radiation process Qr will depend on the

"radiation geometry," the emissivities and temperatures of the surroundings a

and the material within the boundaries. This complex function will be

written as

dQr = qr dV dt (1.4)
r%

where qr is the net radiant energy conducted into the system per unit

volume, per unit time.
In addition to energy transfer in the form of heat, mechanical work

not associated with mass transfer may also occur. This work is due to

friction caused by the shearing or tangential stresses only, since the

normal stresses cannot move the faces of the chosen system and, therefore, 0'

can do no work. The frictional work will be a function of the shearing

stresses, the velocities, and the viscosity. Relationships involving these

variables are necessary to write explicit expressions for the frictional

work. We express this term in the general form

W = qf dV dt (1.5)

where qf is the frictional energy per unit volume and per unit time. The

derivation of qf can be found in standard texts, i.e. Kreith (1973), and

is 0
Ds2  aP aP aP
Ds2-- 6t + u T + v T + w 3} (1.6)

qf + y -I

The dissipation function f is
'"2( ' '+ v2+ J( w 2 Z-3 V2 + (jv + !H)2 %,m

au 2 aw v 2 2

+ .w-. + O, + ( + --, (1.7)

where P - pressure S

P - density .
5
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0 = viscosity

s -SIfluid speed

s = velocity relative to x, y, z frame

D/Dt = (a/t) + s.V is the total or substantive derivative

V = div s = (au/3x) + (av/y) + (aw/az)

u,v,w - components of velocity in x, y, z directions.

1.2.2 Energy Transfer Associated with Mass Flow

The energy entering the system with the mass flow, is made up of three

parts: 1) the microscopic energies called the internal energy, 2) the

macroscopic energies resulting from flow velocities and gravitational

potentials, and 3) the flow energy needed to move the mass into the system.

The internal energy is due to the microscopic kinetic energy resulting

from the motions of the atoms and the potential energy associated with the

force fields existing between the atoms. The symbol U indicates the

internal energy per unit of mass. The macroscopic energy consists of

kinetic and potential energy terms. The kinetic energy is that due to the

gross velocity of the aggregate of material involved in the flow and is

designated, for unit mass, by the symbols C2/2, where C is the flow velo-

city.

The macroscopic potential energy is that caused by external force

fl-ilds, such as gravity. The flow energy, resulting from the work done in

moving the mass, is expressed as the product of the pressure p and the

specific volume vs or pvs . The sum of these energy terms is the total

enthalpy designated by the symbol H:

H = U + -+ pv + (1.8)

The energy flow into the control volume, in the x direction, is

E =pu dy dz H dt
ix x

The energy flow out of the control volume is

Eox - [pu dy dz H (puHx) dx dy dz] dt
0 ~ x

The net inflow of energy due to mass flow in all three directions is

E -E -[I-(puH)+-(pvH)+ a (pwHz] dV dt (1.9)
i o x y az

The value of H depends on the type of material and the flow veloci-

ties. For example, if the material is a perfect gas, and if we assume that

6



the macroscopic potential energy changes may be neglected, the total

enthalpy is
U2

H cT +-

x p 2

where Cp is the specific heat at constant pressure.

1.2.3 Energy Generated

Energy may be released or absorbed by electrical, nuclear, magnetic,

or chemical means. For example, an electric conductor subjected to a volt-

age potential, as well as temperature potentials, will generate energy that

will be proportional to the square of the current flow and the electrical

resistance. Similarly, if a chemical reaction is involved, the energy

released or absorbed will depend upon the type of reaction and the reaction

rate. The latent heat of fusion, while it is actually associated with

changes in the internal energy of the substance, can often be expressed as

an energy generation term. The generation term becomes

Q -q dV dt (.0

where qg is the energy released per unit volume and per unit time.

1.2.4 Stored Energy

The energy stored within the volume of material is made up of internal

energy and macroscopic kinetic and potential energy terms. The macroscopic

kinetic energy, due to the velocity, is s2/2 for unit mass. The changes in

macroscopic potential energy are assumed to be so small that they may be S

neglected. The change in stored energy AEs may be written as %
s2 %

AE =jy[PU +-- dV dt (1.11)

where s2 = u2 + v2 + w2 .

If the material is a perfect gas, the value of U may be taken as

U - c T + constant where c is the specific heat at constant volume.v v

The general energy equation may now be written as

aT (k a + a a
( (k + w -y+ (k (i k -) + - qf +

(1.12)
a a. 2

• a- (pull ) + y (pvHy) + Lz (PwHz + L- (PU-- Ps
ax x an r i z at 2

After some manipulation, this can be rewritten

7



DT T. . a. ia. -TWO?%,

div (kgrad T) + qr +q DT TO lit (1.13)
g ~pDt DL

where B - -(I/p)(3p/aT)p is the coefficient of thermal expansion, and k

is the thermal conductivity tensor.

Special cases of eq 1.13 occur for gases and liquids. For a perfect

gas, BT - 1, and

div (; grad T) + q + qg = pC DTt (1.14)

g p Dt Dt -(.4

The incompressible fluid has 0 - 0, and
= DT

div (; grad T) + q +q = qX p Dt-l . (1.15)

For flow through permeable materials, such as soils, the viscous

dissipation is often negligible. If the material is also isotropic, then

eq 1.15 can be written as

div (Z grad T) + q + qg = Pc . (1.16)r p Dt

Finally, if the thermal conductivity is constant,

2 D
kVT+ qr + q =OCp D (1l,16a)

where V2 is the usual Laplacian operator.

1.2.5 Conduction Equation

Equation 1.13 is the most general form of the energy equation. It

must be simplified if solutions are to be found. For a solid where the

material is not in motion relative to itself and all the velocities are

zero, the dissipation term and the pressure term may be dropped, and

DT 3T

Equation 1.13 is then

div (C grad T) + + qX PC 3T (1.17)
r P a t

We assume that the material is orthotropic and that the radiation term will

be handled as a boundary condition. Then eq 1.17 becomes the general

conduction equation:

, 3T. a 3T a 3T aT ",.
Skx ) + y (ky ) + z (kz -z) + q g = Pc (1.18)

This can be further simplified if all the properties are assumed constant.

8

A,. I



01,

Then

qg 1 T (1.19)k- a at

where a = k/pc is the thermal diffusivity.

For cylindrical coordinates

I 1 3 T 3 13T 3
7 2 T-- -(r aT) +- _(I-3T)+ -(r-)] (1.19a)ar @ r 36 r e) az 3z

For spherical coordinates

V [ (r2 3T) + 1 (sine T) + l _ 2T] . (1.19b)
r2 3r ar sine 3e 3e sin2e a 2

One often begins with eq 1.19 in solving conduction problems. No subscript

is used on the specific heat, since cp = cv for solids or liquids.

For convective systems with liquid flows, the energy equation is often

written as

T+ = T + s VT] (1.20)V2 k aa -

These equations can be simplified for particular situations. A common,

one-dimensional problem is that of a region initially liquid at a

temperature TO, which has its surface temperature suddenly dropped to 0

Ts < Tf for t > 0. The material freezes at Tf and the solidification

front is denoted by X(t). The process of thawing is obviously similar.

Consider the case of melting. For the liquid region (region 1), convection

is possible and eq 1.15 is 0

3T1  3T 3T(

(k i -- ) = Pic 1 [- + u 19

The solid phase may be assumed stationary and impervious to liquid flow;

therefore eq 1.18 is appropriate:

a aT 2)3T2T 2 2'- (k2  -x-) = P 2c2 3t " (1.22)

If the bulk velocity u in the liquid is due only to the volume change

during melting, caused by the density differences of the two phases, a

simple equation results. Consider a volume of solid AAX, which melts in

the time At. The mass of the material in the volume that changes phase is

constant but the volume change of the solid can be different than that of

the liquid:

9



A u At = V2 -Vi = m(- - )
P2  P1

Then the velocity induced in the liquid is

P2 dXu (I . (1.23)

The energy equation for the liquid phase is then3Tl aTl P2d aT]

(k IT,) = I (1-  2 dX 1 (1.24)
ax Iax p1c1[ -- + -) Tt -x--

If the thermal conductivity is constant, than eq 1.22 and 1.24 are

32T I' aTT21 = 1 1I + (1 - ) 1 (1.25)axT1 ~ [2F TIa)x2 ii at P1 dt 3x "] 1.5

a2 T2 1 aT2

x2 = 1 t (1.26)

ax2  a23

These are the constant property forms of the energy equation.

1.2.6 Variable Thermal Conductivity Transformations

While the constant conductivity assumption is not unreasonable, two

cases of variable conductivity can be handled without too much difficulty.

Case I. Temperature variation of thermal conductivity

A new temperature can be defined by the Kirchoff transformation

-fT k(T') dT' .(1.27)

0

Equation 1.22 can then be transformed to .

2aX 2  P 2 c 2  ax2  1 ax 2
x2 k2 (T) t - 2 (1.28)

This is of the same form as the constant property equation and can be

treated similarly.

Case II. Spatial variation of thermal conductivity.

For this case a new space variable is defined

.qx fx x

The transformation of eq 1.22 is now

10
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2T2 aT2 1 3T2

X2 =k2(xI) P2 c 2  t = a(x 1 ) t

This equation can also be considered in the form of the constant property

equation, with a new thermal diffusivity. In either of these cases, the

"thermal diffusivity" may be a function of the independent variables.

Often, the density of the frozen and unfrozen phases are assumed to be

identical; thus no convection is caused by density difference and the

problem is one of pure conduction. The basic equations are then

a 2T 3T= 0 < x < X(t) (1.29)

ax 2 It

a 2 T2 1 T2-x = -2 -t > X(t) (1.30)

ax 2 a2a

where the thermal diffusivity a may be a variable, and

T I L(X,t) = T2 (X,t) = Tf (1.30a)

TI(x,O) T T2(x,O) = T . (1.30b)
1 2 0

Equation 1.30a describes the natural condition that the frozen and unfrozen

layers are at the fusion temperature at the boundary where phase change is

occurring.

1.3 Energy Balance at the Phase Change Interface

At the interface between the phases, energy will be released or

absorbed as the material freezes or thaws, respectively. The conservation

of energy applied to the mass of the volume AAX, which undergoes phase

change during At, is

(q - q2) At + qAt - W = AE°
q1  2

In this relation q, and q2 are conduction heat transfers while q may .

represent other heat flows. The work associated with the volume change of

the mass is W. The energy balance is

1T T2 P2f i

(-k + k 2  --) AAt + p AAx (I - 2) + qAAt = m (hf - ) •

The enthalpy change from the solid to the liquid phase, hf - hi, is the

11
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I'

latent heat 1:

'T + T2 ( P2  dX + dX
-k + k 2  + p - - + q t (31a)l Pi

A similar relation holds for the solidification process:

IT1  'T2  1 XdX
-k + k + p (1 - + q = -P d t (1.31b)ax 2 ax P2 l t

The work term in eq 1.31 may be neglected if the system pressure p is

much less than 30,000 atmospheres. Thus this term is normally not

considered and

TIT2 dX
-kI T + k2 x= + p1 i ; x = X (1.32)

where the upper sign is for melting and the lower sign is for freezing.

Equation 1.32 is also valid for cylindrical and spherical coordinates if x

is replaced by r.

The derivation assumes that the interface motion is in the positive

direction of the space coordinate. If this is reversed, as for

solidification of a cylinder of water, then the signs for the latent heat

are reversed in eq 1.32.

1.4 NONLINEARITY OF SOLIDIFICATION PROBLEMS

The phase change introduces a basic nonlinearity into the boundary MW

conditions of the problem. If we consider eq 1.30a, the temperature at the

phase change interface is

T(x,t) x=X = Tf

The differential of this equation is zero since Tf is a constant:d T T '

dT = -T dx + L- dt 0ax

Now if this is evaluated at x = X:
TdX T

Combining this result with eq 1-29 and 1-32 produces a boundary condi-

tion in the form

I

12



aT2 2 T2 aT 2T '

-k 1 (-'-) + k 2 3-3-) - P I - ; x = X (1.33)
xx 2(xax1 2 I a 2

where the upper sign is again for melting. The nonlinear nature of the

problem is quite obvious in this form.

The nonlinearity can be explicitly expressed in the differential

equation for the energy. Consider a melting problem with no density

change. The following system of equations will be considered:

32 T I T (1.34)

x a at

T(X,t) = T (1.35a)

T(x,O) = T (1.35b)
0

T(O,t) = T (1.35c)
s

LdX 3T
pt -k !-, (X,t) . (1.35d) r

The phase change interface will be immobilized by using a new variable

called the Landau transformation,

x (1.36) 5

The equation is nondimensionalized by using the following variables

T-T

V - Tffiat/X 2 S (T T)
T -T o X T s f
s 0

Equations 1.34 and 1.35 are

2v (+,C) Sv (1.37)

V(Co) = 0 (1.37a)

T -T
V(o,T) =S - T0 (1.37b)

Tf - T f'

T -T
f 0 (1.37c)

(1,r) -T - T .

5 f

d__ T v (1,T) (1.37d)

13
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The domain of the phase change is now limited to (0, 1) and the non-

linearity is clear in eq 1.37 .y,.

This inherent nonlinearity, along with the unknown motion of the phase '-I

change interface, has limited the exact solutions of phase change problems 0

to a mere handful of cases with particularly simple geometries and boundary

conditions.

1.5 HEAT AND MASS FLOW IN POROUS MATERIALS

A porous material, such as a soil, is often represented as a conti-

nuum, as already noted. However, it is useful to examine some heat and

mass flow relations that may occur within the pores or voids of the

material. We direct our attention to systems with water although other

liquids may be present.

1.5.1 Conservation of Mass and Energy

A porous medium can be considered a matrix of solids, which creates a

solid skeleton with voids between the solid particles as seen in Figure

1.2. The void space can contain water in the vapor, liquid, and solid

phases and noncondensable gases such as air. We will consider these four

constituents bound within the solid matrix 5

SoilSoids and the solid matrix itself to make up the.2

porous medium.

In a given volume V of the material,

Air, Water Vapor, Liquid Water mi will denote the mass of component i.
and Ice in Void Spaces The subscripts 1-4 will denote vapor, water, ..

ice, and air respectively. The mass ratio

of each bound constituent is

=--m (1.38) ,..

Figure 1.2 Schematic of a where mo is the mass of the solids and the
J:

porous medium such as soil- solid density is defined as o = mo/V. 0

The total bound mass is

4
ffi=1 8i •(1.39) NI&.

Since the masses of water vapor and air are negligible, 8 can be

14



approximated by

0 = 82 + 03 (1.40)

Conservation of mass and energy must hold for each of the constituents. =

The mass flux rate for a component is defined as Ji. We are

concerned mainly with the water liquid and vapor fluxes. Then the

conservation of mass requires

a(P0 )
t - -div j + I " (1.41)

where Ii denotes the amount of component i that is created or destroyed

within a differential volume (in particular, by phase change). Since

4 0
I. = 0 (1.42)

i=1

it follows that

ap a 4
0 =S

at -div( j j 1 ) * 
(1.43) z-

i=1

For the porous medium we will assume that conduction and enthalpy

flows will be the energy flux terms. From eq 1.16 it follows that

4 4 a (Poihi) 9

-div q = L div (jihi) + at (1.44)

i=1 i=O

or

4

a i 1 ~ 4i=O °ilt4i

= -div (q + 1 h (1.45)

at ii

where q is the conduction heat transfer and hi the enthalpy of each

component.

The specific heat at constant pressure is

3hk
c = ".
pk 3

Then

(peh) ap e T
h =h oi +Pec (1.46)

at i at i pi at

4 .4 p 0 4
aT 0 oi

SP+ = hi a -div(q + jihi) (1.47)i =I pi t a

15 .
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From eq 1.41,

4 a(P8) 4 4
h hi oi - hi div J +  h I.

ifil i-l 1=1 .e
S

4 4 4 4
ooep - I hi div J- i1 h i 11 -div (q + I ijhi) (1.48)

i -o ici t m 1=1

Now

[div jh j j di, h + h div Ji j c VT + h div j .(1.49)
ii I I i p1 i P.

p

Thus

aT 4

POC w-= -div q - (hi Ii + Cpi Ji VT) (1.50)

where the weighted average specific heat for the porous system is

4
C I " c . (1.51) 0

1i p1

From Fourier's law

q - -k VT (1.52) ,

and

3T 3 3

PoC a= div (k VT) - I hiIi - I c ji VT . (1.53)
i-I i-I

The convective heat transfer term, in eq 1.53, is often ignored if the

mass flux includes only diffusion. This is not acceptable if water fluxes

such as filtration or groundwater are present (Luikov 1964, 1975).

1.5.2 Mass Fluxes

The flux of a gas (in particular, water vapor) is governed by Fick's

law

- Da (1.54) ,5.

v RT v

where
j - mass flux, ibm/(s-ft2 )

Da - diffusion coefficient of water in air, ft2 /s -,

R = gas constant, (ft-lbf)/(lbm*R)

T - absolute temperature, *R

pv - partial pressure of water vapor, lbf/ft 
2
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If the partial pressure is a function of moisture content 8 and

temperature, then .4,

ap vap
v_ = + -- VT . (1.55)

The relative humidity n is related to the vapor partial pressure by

Pv = Psn (1.56)

where ps is saturation vapor pressure, a function of temperature only.

The vapor pressure is a function of water content and temperature if J

the water content is less than the maximum moisture due to sorption es .

For 6 > Os (moist body), the relative humidity is unity and the vapor

pressure is a function of temperature only. Then 0

ao
Da [P(a e + s VT] (1.57)J v RT s T ( ; e

This equation is often written as 0

Pv - D6v VO - DTV VT (1.58)

or

- = - D VO - D VT (1.59)
P eV TV

where N V and DTV are modified to account for the decrease in diffusion

due to the pore geometry and water content using a factor E. The flux of

mass can carry with it a flux of both sensible and latent heat. It follows

fronm eq 1.57, that
Va.

E Da
D = R - (1.60)6V p PT s

0

CTDa ap
TT s8".,D TV = P RT T TI (1.61)

0

For a moist body, DOV = J.

Capillary water transport is controlled by the Darcy equation, for low

flow velocities:

J2 = it = K PwV$ (1.62)
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where Kt is the hydraulic conductiv- 
1 3 1 50 6

ity of the medium and a the total 
80 V

potential for water transport. 90

to2
The moisture potential for a 9

soil system can be expressed as
Cly -98

- I + Pwgz (1.63)
wa

where I moisture potential, a func- 0 995

tion of temperature and water content 998

and Pgz = gravitational potential Loom

energy. Examples of moisture poten-to-99

tials are shown in Figure 1.3. Equa-

tion 1.62 can then be written as 
Sil

- -- 
L ~0-10- -J --

K J ( VT+ 0 o 30 40

p -z pwg (T 8 Woer Content (% by t ,)

Figure 1.3 Suction and relative hu-

rae. VBl + z] (1.64) midity of different soils (Johansen

1975).

or

-Kf !- 1() Ve + ( )VT} + Vzj (1.65)
p ZIP 9 36T 'aT 0

0 0

-Dt VO - DI VT-K Vz .66)..

-=-D ye - D VT-K -HVz (1.67)

where

K, K

ez W8 (Iae)T ek POg ae T

K_ K
.%

D; Wg (@- O T D£:Po O T
"'

If the gravitational potential is ignored, or Vz = 0,

-D V6 - D VT. (1.68)

P0  ek TZ0

The total flux of moisture can be written as

18
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-D V6 - Db* .T

PO V6-DT (1.69)

or

-Do[V8 + 6 VT] (1.70)

where Do  DOV + Do (ft2/s)

DT = DTV + DTL (lbmw ft2)/(ibms-s-*F)) a

6 = DT/D0  (1bmw/(lbms*F))

lbnw - mass of water

Ibms = mass of soil.

The overall conservation of mass, eq 1.43, is then
I ae
D a _ V 2 + 6 V2T " (1.71)

1.5.3 Energy Equation for Unfrozen Medium

If the medium remains above the solidification temperature of the S

moisture, then no ice can be present. From the relations developed, the

energy equation is
3T

PO C . div (kVT) + te 12 -(CplJl + cp2 J2)VT (1.72)a t -2 " c 2  -

where Ze is the latent heat of evaporation. ,

If J1 - 0, (no vapor flux), then 12 = I1  0, and

pO a div (kVT) + cp2 Po[Dof V + DT£ VT]VT (1.73) j\

If convection is negligible, then the usual energy equation governs:

pO C t - div (kVT) • (1.74)

1.5.4 Energy Equation for Frozen Porous Medium

We shall assume negligible vapor flux and convective heat transfer.

Then

e 02 + 83  (1.75)

ao2
I2 =Po-' - div J2  (1.76)

Po div (1.77)

4.19-,-.
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aT Do3
PoC i-div (kvT) + pok [-] •(1.78)

If melting/freezing occurs but there is no liquid flux,

PO - div (kvT) - pot at (1.79) S

1.5.5 Moisture Flows in Soils

A qualitative picture of the moisture flow coefficients, for soils,

can be obtained from Figure 1.4. In this figure, the relative humidity

varies slowly with water content until the soil is quite dry (thus D0 V is

negligible for wet soils) increases to a maximum for dry soils, and dis-

appears at zero water content. DTV decreases as the water content

increases due to increased liquid water and also decreases as o decreases

because of the low relative humidity. A

maximum value occurs at a low water con-
00etent where liquid continuity is low. The

2 moisture potential increases as e decreas-

_ es but is large for all water contents.

\DD Do -M_ S The hydraulic conductivity tends to de-
O~ 2V

~ \ DIVcrease as water content drops and thus

DTV Dot is relatively constant for wet

- 12O ~ -i soils and drops abruptly as the soil10 20 30 40 50

Water Content (% by vol) dries out due to low water continuity.

.gure 1.4. Moisture diffusiv- The variation of moisture potential with
ties shown qualitatively (Jo- r
hins shown qualitatemperature is relatively weak and thus

hans~:i 1975).
DTZ is modest for soil systems.

In addition to the coupled heat and mass flows described above, heat

flows result from radiation and free convection in the voids. Radiation in

the voids is a function of the temperature levels, pore geometry, and water

content. The radiation effect decreases rapidlv with decreasing pore size,

increasing water content, and decreasing temperature. Thus, radiation will

be most prominent for low saturation, large pore size, and high tempera-

tures. The radiation heat flow can be written as V.'

qr -h VT (1.80)

where hr is a radiation coefficient, which is a function of pore size,

water content, and absolute temperature.
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Free convection in porous media will be initiated if the Rayleigh

number exceeds a critical value. The Rayleigh number Ra for a layer of

porous material containing a fluid is
R gpdKAT 0. rR = 8gpK (1.81)

Ra a

where

d = layer thickness

K - permeability

AT - temperature difference

a = thermal diffusivity.

As the pore size decreases, a larger temperature difference is needed to

initiate convective motion. 0

The free convection can be calculated from

-aT( b VT = -h VT (1.82)qc 
c

where a and b denote coefficients for a particular convective system. Free

convection rapidly decreases in importance as the pore size decreases. For

dry systems, air convection will predominate, while highly saturated media

will experience convection in water.

1.6 CONDUCTION IN POROUS MEDIA

It has been known for many years that, notwithstanding the mass and

heat flux relations just derived, pure conduction may be an excellent

assumption for porous media (Porkhaev 1959, Martynov 1959).

The total heat flux that might occur in a porous medium is
qTO -(k + phvDT + pwhDT + hc +h) VT

-(pwhv9Dv I pwhXD81) . (1.83) e.

An effective thermal conductivity can be defined to account for that part

of the non-conduction heat flux which is expressed in terms of the

temperature gradient:

k = k + pwhvD + Pwh D + h + h . (1.84)
e wvTV w c r

If the second term on the right-hand side of eq 1.78 is negligible, then

pure conduction is an excellent assumption., with the thermal conductivity
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- GrovL___. Figure 1.5. Regions of predominant

Clay Silt Sand influence of the various heat
10- J transfer mechanisms in relation to

0 soil grain size and degree of sat-
08x uration. Expected variations in

degree of saturation under field
06 \conditions lie within region

lob 0 4 bounded by dashed lines (Johan-
sen 1975). I--thermal redistri-
bution of moisture, 2--vapor dif-L02

N fusion due to moisture gradients,
o 10 .. 16 0 3--free convection in water, 4--
0 1o o to 10 10 ' free convection to air, 5--heat

Equivalent Pore Diameter (m) radiation.

and other properties of the medium altered to account for the radiation and

moisture effects.

Clearly, such an assumption is not possible if a significant heat flow

from bulk water movement occurs. Figure 1.5 is a qualitative attempt to

outline the important heat flow regimes in a soil system (Johansen 1975).

Note that for nearly all practical cases, pure conduction will predominate

or can be corrected with the use of an effective thermal conductivity. The

figure is strictly valid only for a thawed soil. If a freeze interface

exists, then the flow of soil moisture can be significantly increased and

convection may need to be considered explicitly.

For many applications, a soil system can be reasonably treated as a

continuum and the temperature field evaluated on the basis of conduction

only. The effects of moisture can be incorporated into the soil

properties.

NOMENCLATURE FOR CHAPTER 1.

A area

cp, cv specific heat at constant pressure, constant volume

C flow velocity

d thickness of permeable layer

D diffusion coefficient

Ei, Eo energy flow across boundaries

Es  stored energy in system

g gravitational acceleration

go conversion factor for systems of units

hr radiation coefficient
22
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he coefficient of convection

hf, hi final and initial specific enthalpies

hi specific enthalpy of ith component in porous body

hfhv  enthalpy of liquid and vapor

H enthalpy

I source/sink of component in porous body

k thermal .onductivity

kthermal conductivity tensor

K permeability of porous layer

Kt hydraulic conductivity

i latent heat of fusion

j mass flux of water

Ji mass flux rate of ith component of porous body

m mass

mi mass per unit volume of ith component of porous system 9

PS saturation pressure of water vapor .

Pv partial pressure of water vapor

P pressure

q heat transfer rate

qg' qf, qr generated, frictional, and radiant energy per unit

volume, per unit time

Q energy in form of heat

Qg energy generation in system I

R gas constant M

Ra Rayleigh number

s s'fluid speed

s velocity relative to x, y, z frame

Sr degree of saturation of soil

S (T - Tf), Stefan number
T I-

t time S
T temperature

TO, Tf, Ts  initial, fusion, and surface temperatures

u, v, w components of velocity in x, y, z directions

U internal energy D

vs  specific volume
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V volume

W work

X9 y, z Cartesian coordinates

XL transformed coordinates 0

X phase change interface position

Z location of fluid in gravitational field.

a thermal diffusivity

P coefficient of thermal expansion
~~DT/D e >"

V div s

VA gradient of scalar quantity A. 0

C diffusion correction factor

x/X, Landau transformation

11 relative humidity

8 moisture content

ii viscosity

V (T - To )/ (Ts - Tf)

, 0
p density 0
T at /x 2

* frictional dissipation function

0 total potential for water transport V

X transformed temperature

*moiscure potential

Subscripts

I - liquid

v - vapor ".

w - water

1, 2 - thawed and frozen regions

0,1,2,3,4 - solid, vapor, liquid, ice, air components in a porous medium N

V
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CHAPTER 2. PLANE PROBLEMS WITH TEMPERATURE BOUNDARY CONDITIONS

As noted in Chapter i, the principal mode of energy transfer is often

diffusion or molecular conduction. In the following chapters only those

problems that can be formulated in terms of pure conduction will be con-

sidered, and useful solutions for plane, cylindrical, and spherical geo-

metries will be examined. These can include pure substances, alloys, mix-

tures, and some cases of porous media.

Ideally, exact solutions of important engineering problems of freezing

and thawing are sought. However, because of the nonlinearity of the phase

change system, there are very few complete analytic solutions. Thus,

approximate solutions will be sought for those problems that have not been •

solved exactly. Several approximate methods have been widely used, includ-

ing quasi-steady methods, the heat balance integral concept, and variation-

al methods. Discussions of these methods are given in Appendices A-D.

This chapter will look at plane problems for which the temperature is

specified as a boundary condition. Chapters 3 and 4 will consider convec-

tion and heat flux boundary conditions.

2.1 NEUMANN PROBLEM AND VARIATIONS

Systems with plane interfaces occur frequently in engineering design.

The first and still the most comprehensive exact solution method is by

Neumann (c 1860), generalized in Carslaw and Jaeger (1959). It is

instructive to examine, in detail, this classic problem and its solution.

2.1.1 Exact Similarity Solution.

Initially, a semi-infinite region, as shown in Figure 2.1, is at a

constant temperature TO and the temperature of the surface is suddenly

dropped to T. and held constant (step change at surface). Initially the

medium is assumed to be in a liquid state, i.e. To > Tf, where

To = initial temperature

Tf - fusion temperature of medium 0

Ts = surface temperature.
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Solid Liquid w .
Region I IRegion 2 ''P

Tff

TSS

Phase Change
--- x Interface Figure 2.1. Temperature

distribution in partially
,=o X=x~t) frozen medium.

The Neumann problem can then be formulated as
a2 Tt I arz 0
a 2 att 

(2.1)

a2T2 (2.2)

ax2 12  at

xl.m T2 = To (2.3a)
0%

T, (0, t) = Ts . (2.3b)

The location of the freezing interface is a function of time. The

temperatures at this location, of the liquid and solid, are both equal to

the fusion temperature:

T1 (X,t) = T2 (X,t) = Tf (2.3c)

where Tf is the freezing point of the medium.

The energy balance at the phase change interface is

3T, BT2  dX
ki t - - k2 -i = pil =; x = X (2.3d)

where A is latent heat of fusion on a mass basis. 0

A solution to this problem is obtainable by using a well-known

similarity transformation. Let

2 (2.4)

Equation 2.1 then becomes S
d2 T1  dTA
-+ 2n- d- (2.5)
dn 2
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The first integral of eq 2.5 can be obtained immediately:

dT_ 2

A second integration gives a formal solution for the temperature:

= A, fn e-12 dS (2.6)
0

The error function is defined as
erf 1, = - fn e _2 dO

2 -- e
0

The error function has been numerically evaluated and tabulated by Carslaw

and Jaeger (1959) (see App. D). Thus a formal solution to the conduction

equation is available, if the similarity transformation is valid. This

will be the case if the differential equation and all the boundary and

initial conditions can be expressed in terms of the single, independent

variable n, which is true for the Neumann problem. However, as will be

seen, this similarity solution is valid only for problems where the phase

change interface moves proportionally to /t-. This precludes the use of the .N

similarity transformation for many interesting problems such as convection/

radiation boundary conditions, variable initial temperature, variable

surface temperature, etc.

A solution of eq 2.1 and 2.3b is then 'p

T, = T + Aj erf . (2.7)

s0

It also follows that

T2 = T - B, [i - erf x ] = T - B, erfc x (2.8)
0 02O7 ON

The notation used in eq 2.8 is erfc n = 1 - erf n.

Then, using eq 2.7 and 2.8 in eq 2.3c leads to

X X
T + Alerf X T - Bjerfc X T . (2.9)

2 /at 2 2V2t 0

Now, since eq 2.9 must be satisfied for all values of time, then X must be

proportional to Vt, for then

a
T + Ajerf = T - Bjerfc = T = constant .

0 21l a
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where it is assumed that X m a v-. Thus, we may write

x - 2y /-t (2.10)

where Y is a constant. Now, from eq 2.7 and 2.8,

3TI 1x 2

-M A, exp (--

ax V'L- t 4ait

3T2 Ix 2

- = BI __ exp (- •

ax vIt=2 t 4a2 t

Thus from eq 2.3d and 2.10,

k A e -k 2 BL/ a exp (-a1272) = al p

where 012 denotes the ratio of a1 to a2.

Then using eq 2.9 and 2.10,

T + A~erf Y = T - Bjerfc Y ,-- = Tf
8 0a1 f

Tf - T (TO - Tf)
A, f s BI 0=

erf Y erfc (y Ia 2 )

and finally, the equation for the constant Y is

C1 2
fTe

exp(y 2 ) k21 I (T T )eT .2Y
o 0 f (2.11) .5.

erf y (Tf - T s ) erfc (Y /a2) cl(Tf - T)

The temperatures are now given by

(Tf - Ts)

T = T + -f serf x(2.12)
s erf y "/a, -t

(T Tf) _____

T2 = T - erfc . (2.13) 0erfc (y '/a.2) 2/a- k

For various properties and conditions, the value of Y may be numerically

evaluated; this has been done, as given in Table 2.1, for water with the

following properties:
(ice) (liquid water) .-

k i - 0.0053 cal/s-cm-*C k 2 - 0.00144 ..

a 1 = 0.0115 cm2 /s a 2 = 0.00144

c I - 0.501 cal/g-*C c 2 - 1.0

t - 79.71 cal/g
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Table 2.1 Value of Y, eq 2.11, for water (Carslaw and
Jaeger 1959).

(Tf -T 8 ) (T0 - T)

°C 0 1 2 3 4 5

1 0.056 0.054 0.053 0.051 0.050 0.049
2 0.079 0.077 0.076 0.074 0.073 0.071
3 0.097 0.095 0.093 0.091 0.090 0.088
4 0.111 0.110 0.108 0.106 0.104 0.103
5 0.124 0.123 0.121 0.119 0.117 0.115

The solution is also valid for the thaw case if the meaning of the propertyp
subscripts is interchanged; i.e. region 1 is now thawed.

2.1.2 Heat Balance Integral Solution

A simple, but useful, approximate solution to the Neumann problem can

be obtained by the use of the heat balance integral method. The system of

equations, derived in Appendix B, for the freeze problem, is

d8 dX aT,(X,t) 3T1 (0,t)
t rf CL I -] 0 (2.14)

dt fl it ax ax

d 2  T d6 dX 3T2(Xt) 0 (2.15)

dt o Tf - + 2 ax

where subscripts 1, 2 denote the solid and liquid regions and 6 -

temperature penetration depth. %

a, - jX TL(x,t)dx (2.16)

82 =f 6 T2 (xt)dx (2.17)

T(0,t) = T (2.18a)
s 0

TI(X,t) = Tf (2.18b)

T2 (6,t) = T (2.18c)o *e,,
0S

8T2 (S,t)
3x = 0 (2.18d)

T2 (X,t) " Tf (2.18e)
fS

%1
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T, (X,t) aT2 (Xt) dX (2.19) 1%

k ax - k2  9x = p t

2 0aT1 (Xt) aTL (X,t) 9T2 (X,t) a2T I (X,t)
-k [ tx ]2 + k2  8x ax plta1  aX2  (2.20) S

Assume that the solutions for the phase-change interface X and the thermal

penetration depth 6 are

X = 2y /a-T (2.21)

8 = 20 /c-t • (2.22)

S

A linear approximation for the temperature in region 1, satisfying eq

2.18a,b, is

T= T + (T - T ) (2.23)
s f sX

A quadratic approximation for T2 which satisfies eq (2.18 c,d,e) is

x-X (x-X)
2

T2 -Tf + 2AT --- AT X (2.24)

where

AT =T -T
0 f

The key to the solution is to recognize, from the exact solution, that 6/X

should not vary with time, although it is a function of *, ST, and the

property values. Thus, let 6/X = b(*, ST, property values),

where

ST  - (Tf -TS),'""

ci-"
S

T -T
0 f
T T

f 5

The ratio of the sensible to latent heat I- lefined as the Stefan number,

ST. This dimensionless parameter will be ised frequently in

solidification and melting problems. Equation 2.24 is then . -.

T T + 2AT x-X AT(x-X)2  (2.25)
f (b-i) X (b-1)2 X2  2.5
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Then, with eq 2.25, eq 2.15 is

2 ddX 2a2AT d
(T + 2 AT)(b - ) - T + + T = 0 (2.26)
f dt 0 dt (b-I)X f dt

By use of eq 2.21, the value of b can be obtained from eq 2.26: '-

b 2 .25 + 2  2 (2.27)

Equation 2.16 for el is

T + T
s f . (2.28)

In eq 2.14, the term 9Ti(X,t)/3x is evaluated using eq 2.19 and eq 2.23 and •

2.25. This leads to the following differential equation for X:

(-! + ST - = --' (1 - b-I0 (2.29)
T

The solution is straightforward and can be written as 0

X =2Y ('a Lt

with

2 -bT - L 2  4a ST2

y= 2a (2.30) O

J.2k21 $S5"

a (ST + 2 + T) (ST + 2)
a2 L "'

ST)2 1

k2 1  ST 4 (k2
l  S )2 "

b1 =-2 ST (ST + 2 + 2 ) 4 2 T
TTa 2 1  L2 L

As often occurs with the heat balance integral method, a more

complicated approximation for Tj does not significantly improve the

accuracy. A quadratic approximation TL that satisfies eq 2.18a,b and 2.20

is

T T + px(x-X) _ sT (x-X)
2

f = f X2 (2.31)

k2 1AT . k2 1AT
c CL + (b-I) + C ) + 2(__!)2 s S -TP+A (-) c - cj

The equation for X is now S
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T 2dX ' 2k2 LAT

6c [ c, b-I

The solution to this equation is

2= 3(1 + 2S - 3F2 - FI  (
+ 2 ST + F2 + F1  (2.32)

F, = / (I - F 2 )2 + 2S ,.e'

k2 1 # ST
F2  b-I .. ,

The approximate equations for y, eq 2.32 and 2.30, can be compared to

exact values, eq 2.11, given by Carslaw and Jaeger (1959), for water-ice

systems. The values are shown in Table 2.2.

Clearly, both approximate equations yield good results for small

values of ST • Sparrow et al. (1978) have calculated exact values of y -. 4

for k2 l = a2 L = 1. These comparisons are shown in Table 2.3. Typical soil

ratios are also compared in Table 2.4. These calculations indicate that

the heat balance integral gives a very good approximate equation for y over 0"

a wide range of ST, *, and property values. Equation 2.30 should be

within 5% for all practical cases for soil systems.

Nixon and McRoberts (1973) found a semi-empirical relation for Y, with

Table 2.2 Accuracy of approximate y-values for ice-water system from
(from Lunardini and Varotta 1981).

Error %, Error %,

ST  b Exact eq 2.30 eq 2.30 eq 2.32 eq 2.32

0.0063 0 0.056* 0.0559 -0.2 --- --- .
0.0063 5 0.049* 0.0486 -0.8 --- -.-

0.0314 0 0.124* 0.1243 +0.3 ---
0.0314 1 0.115* 0.1156 0.5
0.1 0 0.2200 0.2181 -0.9 0.2232 1.5
0.1 5 0.1176 0.1190 1.2 0.1200 2.0 -
1 0 0.6201 0.5774 -6.9 0.6600 6.4
1 5 0.1449 0.1479 2.1 0.1497 3.3

(k21 - 0.2717, Q21 - 0.1252)
*Values from Carslaw and Jaeger (1959).
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Table 2.3 Comparison of Y-values, C12 1  1 = 1.0 (from Lunardini and
Varotta 1981).

Error %, Error 2,
S T Exact eq 2.30 eq 2.30 eq 2.32 eq 2.32

0.0058 0 0.0538 0.0538 0 0.0539 0.2
0.0058 5 0.0459 0.0458 -0.2 0.0458 -0.2
0.1 4 0.1278 0.1276 -0.2 0.1290 0.9
1 0 0.6201 0.5774 -6.9 0.6600 6.4
1 4 0.1704 0.1706 0.1 0.1737 1.9

Table 2 4. Accuracy of approximate y-values, k21  0.51, a2 1 = 0.3355 0

(from Lunardini and Varotta 1981).

Y .

Error %, Error 2,
ST $ Exact eq 2.30 eq 2.30 eq 2.32 eq 2.32

0.0058 0 0.0538 0.0538 0 0.0539 0.2
0.0058 5 0.0468 0.0465 0 0.0465 0
0.03 0 0.1219 0.1215 -0.30 0.1225 0.5
0.03 5 0.0860 0.0861 0.1 0.0865 0.6
0.1 0 0.2200 0.2181 -0.9 0.2232 1.5
0.1 5 0.1168 0.1174 0.5 0.1185 1.5
1 0 0.6201 0.5774 -6.9 0.6600 6.4
1 5 0.1460 0.1477 1.2 0.1496 2.5

t = 0, as

SS
Y = l-T47(-3

In the limit as * + 0, eq 2.30 reduces to

Y (2.34)

and eq 2.32 is

5 + 2 S T + / + 2 S T
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The quasi-steady Stefan solution is shown (App. A) to be

= . (2.36)

All of the above equations are quite close, and accurate, for small ST

values, but eq 2.35 gives the best overall accuracy.

2.1.3 Stefan Problem

Problems of conduction with phase change are sometimes generally

classed as Stefan problems or moving boundary problems. However, in the

Neumann problem, if the medium is initially at the phase-change temperature

only one phase will be present. This special case of the Neumann problem

is also often referred to as the Stefan solution, following the original

work of Stefan (1891).

If the initial temperature of the liquid is Tf, then eq 2.11 is

Y2 cI (Tf - T)
erf y =_(2.37)

Now, when x is small, the error function may be approximated as

2 (_I)n 2n+l 2 x3  x
erf x = 2 n=O 2) (x - y-+y,+.

Thus, if y is small

erf y 2 y (2.38)

and eq 2.37 is ;-

2 cl(Tf - T) 1*

or

c I (TfT
2 = _ -_ T_ )

- 22. (2.39) W,

and

-( T f - Tst
X - . (2.40)

Introducing the Stefan number gives the phase change depth as

X = '2 ST ct 34 (2.41) e

.0': . S
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0

and

__2 y (2.42)T

Equations 2.39 and 2.40 were presented by Stefan (1891) who used the

quasi-steady approximation discussed in Appendix A. The Stefan solution is

not an exact solution in the sense of the Neumann solution. For rocks or

metals, ST - 2.0, but for water this value is very small, about 0.03, if

Tf - Ts - 5*C. Therefore, eq 2.38 is an acceptable approximation for

water, and for many soil systems. These values of y compare favorably with

the exact values of Table 2.1 for water at (To - Tf) = 0, as can be

noted below:

(Tf -T)C 1 2 3 4 5

y (eq 2.42) 0.054 0.076 0.094 0.108 0.121

2.1.4 Modified Berggren Equation

One of the most common problems facing engineers in the cold climate

regions of the world is the need to estimate the depth of freeze or thaw of

a soil system. The Neumann solution is widely used for soil freezing

estimates but special names have been given to it that can be confusing.

Berggren (1943) was apparently the first to actually apply the Neumann

solution to soil phase change problems. Aldrich and Paynter (1953) later

used the Stefan form of the phase change solution to arrive at the modified

Berggren equation. Equation 2.10 can be changed to the Stefan form as

X - XV( 2 kf/L)(Tf - Ts)t (2.43)

where X, which replaces y, can be determined from the exact solution.

Stefan (1891) originally solved a similar problem for the growth of sea ice

when the sensible heat to latent heat ratio was small and the water was at

the freezing temperature. Equation 2.43 reduces to the Stefan equation,

eq 2.40, when X equals one; hence the terminology "Stefan form." _

The surface temperature of a soil system does not normally remain

constant during the freeze season and the surface index Is often used:

X i A,(2k f/L)I s  . (2.44)
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The surface index is defined as

I J [Tf - Ts(t')] dt' - (Tf - Y)C (2.45) %0 fo

where C is the length of the freeze season.

Thus an average constant surface temperature T. can be calculated

for the season and be used in eq 2.44, if Is is known. Unfortunately,

the surface index is rarely available for a location; however, the air

temperature index If is usually tabulated and 1s can be replaced with

the n-factor, defined as

n = s/If or I s/It  (2.46) 0

The quantity n is the relation between the air index and the surface

index. A procedure for obtaining a value at a given site is given by

Lunardini (1978).

Finally, the modified Berggren equation is written as

X = )d2kf I fn)/L. (2.47)

Berg and Aitken (1973), among many others, have shown that the

modified Berggren equation gives good results for seasonal phase change

depths even if the surface temperature varies with time. The coefficient X

can be found by equating eq 2.10 and 2.43, leading to the following

equation: 0

e p/e = (2.48)

erf (X/') erfc (rUA/) 2
Si.

The parameters * and 0 take into account the soil temperatures, specific 3

heat and latent heat. The parameter V is one-half of the Stefan number

which is the ratio of the sensible heat and latent heat for a soil system.

For small values of p and 0, it can be expected that X will be nearly one

and eq 2.47 will reduce to the Stefan equation.

The quantities p, q and r are ratios of the thermal properties of the

soil system for the frozen and thawed states:

p (k t/k f)/a f/ca
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q f /C Ia

f t
r - •' Ia.

These relations are for the freezing case. Aldrich and Paynter (1953) used

the relations # and u - (Cf/L)(Tf - Ts)(the Stefan number) and noted

that calculations with typical soil properties indicated af/af: 1.0,

Ct/Cf u 1, and thus kt/kf a 1.0. They then solved eq 2.48 with p - -.

q - r - I and obtained a widely used graph for X (see Sanger 1969).

Actually, this procedure is valid only when the water content of a soil is

zero. Nixon and McRoberts (1973) made a parametric study of eq 2.11, but

presented a graph of X valid only for r = af t 
= 1.43, which was said to 0

represent moist soils.

2.1.4.1 Soil Thermal Properties

It is clear that p, q and r will vary for different soil systems, but

a relatively simple procedure can be used to generate these functions for

any soil. Gold and Lachenbruch (1973) noted that the weighted, geometric

mean for the thermal conductivity of a mixture gives results that are often

as good as those from more complicated methods. The thermal conductivity

of a soil can then be expressed as ...

k - (k s ) s (k (kg) g  (2.49)

where ks, ki and k are, respectively,, the thermal conductivities of
g

the solid, liquid, and gaseous phases; xs, xj and Xg are the

respective volume fractions. For soil systems, the thermal conductivity of

the solids and gases will not vary significantly as phase change occurs

(Kersten 1949). There will be only a small error if it is assumed that the 0

frozen state contains only ice with no unfrozen water. Thus the ratio of

the frozen to unfrozen conductivities of the soil mixture can be related to

the thermal conductivity of ice and water as follows: A PL

kt/kf . (k w/ki) (2.50)

where kw , ki are the thermal conductivities of water and ice, respec-

tively. The volumetric specific heat for the system may be expressed for

the thawed and frozen states as follows: 0
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Ct W Cst(l-x ) + Cwx (2.51)

C = C (1-x ) + C x (2.52)
f sf X i

where Cst and Csf are specific heats of unfrozen and frozen soil

solids, respectively. The neglect of the gas phase is insignificant since

the density of the gas (air) is low. It is fortunate that the specific

heats of different soil solids and ice are all similar in magnitude. For

example, the volumetric specific heat of organic solids is about 2300 kJ/m-

K, for mineral solids it is 1760, and for ice it is 1920 (Lunardini 1971).

The properties of the frozen materials are evaluated at 25*F (269 K) while

the thawed values are at 40*F (277.4 K). If one assumes that the values

for the solids, except for ice, change little through the phase change,

then

Ct/Cf = 1 + [(C w/C) - I] X (2.53)

or S

Ct/C =1 + 1.023 x
t fA

The property values to use in eq 2.48 can then be expressed as simple

functions of the soil water content:

q = R (1 + 1.023 x )

r -

p r/Rx ."

R, the ratio of the thermal conductivity of ice to water, is about 3.89.

Lunardini (1980) solved eq 2.48 numerically to find the roots, which are

the values of X. Figures 2.2 through 2.4 give the values of A to use in R

eq 2.47 for the freezing case.

2.1.4.2 Thaw Case

It might appear that the same relations could be used for either the

thawing or the freezing case. This, however, is not true. In the thawing

case, the medium is initially frozen at To and energy must be conducted

through the thawed layer from the phase change interface. Since the

thermal conductivity of the thawed region is considerably less than that of
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Figure 2.4. Freezing case, Newmann equation parameter,,0

x, - 1.0.

the frozen region, the heat flow will be reduced, even with the same

temperature gradient. However, the general form of the equation will be

the same after making appropriate changes for the property values. The

thaw depth is expressed as

X = AV(2kt I tn)/L (2.54)

where X is again given by eq 2.48 but P = (Ct/2L)(Ts - Tf). The

functions p, q and r all change because of the property changes of the

thawed and frozen states:

q = 1/(R ( + 1.023 xi)

r - /q."/

xi
p =r R• ,.

The A values for thawing are now given in Figures 2.5-2.7. Notice that

when x, - 0, the X values are the same for freezing or thawing, which is

the Aldrich and Paynter (1953) case and was used for the Sanger (1969)
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Figure 2.5. Thawing case, Newmnann equation parameter
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Figure 2.6. Thawing case, Newmann equation paray.±ter,
xq = 0.8. 0
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Figure 2.7. Thawing case, Newmann equation parameter,
Xv. = 1.0. "..,.

graph. The charts for X are for the exact solution of the Neumann problem

with property values typical of soil systens. 0

2.1.5 Constant Phase Change Rate

Stefan (1891) gives a solution for the case of a constant heat flux at

the phase change interface. The equations are

2 = 1q t(2.55)

32  a1 3at

T(x,O) = T(X,t) = Tf

BTL dX
ki  - = Pt .-

X(O) = 0

aT1
x G x X

If the heat flux at the phase change interface is constant, then the

interface moves at constant velocity and an exact solution can be found

using the similarity transformation approach. 0
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Let

T1~ (x -Vt)0

where V is the constant velocity of the interface. It is easy to show that

a formal solution of the energy equation is

T1 = A e
-

If we consider a semi-infinite solid initially at the fusion temperature,

what surface temperature must be prescribed to have the phase change

interface move at constant velocity? The solution follows immediately from

the above equations"

7-V (x-X)

Tj (x,t) = Tf + I - e l (2.56)

kL Gt
X = Vt = • (2.56a) 0

The required surface temperature is
vt

T1(O,t) Tf + K(-e CL "

As noted by Stefan (1891), the surface temperature of an ice layer may drop

rapidly to a constant value. During the transient phase the ice layer will

grow linearly with time and then grow as the square root of time.

This is an inverse problem wherein applied boundary conditions must be

found to obtain a given phase change interface motion. Rubinsky and

Shitzer (1978) give a general solution as follows:

oa n
TI(x,t) - T + an(X) (x - X) (2.57) 0

fnO n n!

a =0

1*
a 0 0

3T (X,t) -
1

a1  ax

a A(X,t) d -2
dX n-i
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A(X,t) dX
dt

The temperature gradient at the interface is obtained from the usual

interface energy relation:
9T (X 't ) d ''

I____ dX
1 x Idt

where Qi is the heat flux supplied to interface from the original phase.

The Stefan problem posed here has Qi E 0 and

dX V = A = constant
dt " '

T1
a- (X-t) = PI V = constant.

Substituting these relations into eq 2.57 yields an infinite series that

reduces to eq 2.56.

The problem does not have significant practical value since it .

requires that a variable surface temperature be imposed upon the solid to

maintain melting at a constant rate.

2.1.6 Problems for the Finite Slab

Most of the solutions associated with a finite thickness are similar

to those of the semi-infinite region, with minor adjustments. The problems

may be adapted to the freezing of water of finite depth, ice formation on

solid surfaces, etc.
0

2.1.6.1 Exact Single Phase Solution

A slab of thickness D with the temperature of the liquid initially at

the fusion temperature Tf is considered here. At t = 0, the surface

temperature drops to Ts and is held there. The surface at x = D is 0

effectively insulated since the liquid temperature has a constant value

Tf.

Ruoff (1958) presented an exact solution for this problem by means of

a similarity transformation. The results are identical to those of the

Neumann solution for the semi-infinite solid. .v.
The equations for the phase change interface depth y and the

temperatures in the solid are identical to eq 2.10, 2.11 and 2.12,

respectively, for the semi-infinite solid, until X = D, when the slab is

completely frozen.
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2.1.6.2 Insulated Lower Surface

There are no exact solutions for the finite slab when the initial

temperature is different from the fusion temperature. Cho and Sunderland

(1969) present an approximate solution for the case of a slab insulated at S

the nonisothermal surface. The problem (see Fig. 2.8) is described as

32TRio Region

= (2.58)Region Reion

2 a, 2tT

o

32T2 1 T2 Tfl1

T2 (x,O)= T (2.60a) 8 $
0 0

T(O,t) = Ts  (2.60b)

a T2 (Dt) Figure 2.8. Two-phase

_0 - 0 (2.60c) finite slab.

ax -

T(X,t) = T2 (X,t) = f (2.60d)

-T1 (X,t) + aT2 (X,t) dX

- ax + k2  ax = -P£ (2.60e)

The assumption of a thermal penetration depth 6 gives rise to two new

boundary conditions:

aT2 (6 ,t)ax - (2.60f)

T2 (6,t) = T (2.60g)
0

For the solid region, the exact solution for the semi-inflnite solid, eq

27, is applicable:

erf ( x___)
T1 - T 2/--t '

T s-T erfy (2.61)
Tf - T erf y

X = 2 YaLt . (2.62) %

In the liquid region, the heat balance integral will be used:
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d T dS X 3T2(Xt)

- o dt f dt a2 ax = 0 (2.63)

where

02 T2 dx (2.64)x

Assume a quartic temperature for the liquid region. Then, with eq

2.60d,f,g, •

T2 = T - (T - Tf) ( -) . (2.65)

Assume that the thermal penetration depth is

6 - 2= --c •t (2.66)

Equations 2.62-2.66 then lead to

8 -Y = [- Y + + Q21 ] " (2.67)

Then using eq 2.61e

e -2 2(T - Tf )k2__ "__Vr

erf Y (T f - T s) kj(8 y c, (T f - T ) * (.8

Equations 2.67 and 2.68 may be easily solved for Y and 8. When the

temperature penetration reaches the far wall, 6 = D, then the insulated

wall temperature will start to decrease. The times when 6 = D and when X =

D are given by *"

-'1 18 (2.69)

t 2  2 (2.70)

The insulated wall temperature for t1 < t < t2 may be estimated by assuming

.D - Xg 4.
T2 (x,t) = T - (T - T D _- -

w w f ~D X)

where Tw = T2 (D,t) is the temperature of the insulated wall when tj < t

< t 2 . Using the heat balance integral in region 2 again, a differential %

equation for the transient temperature Tw may be generated:
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5OL2  dX
(D X)-(T - T) + (- - -)(T -T)= 0

dt w f D X dt w f

The solution to this equation is %

1 1 0
T2 (D,t) - Tf a-(1+c) c(I -a)

T= () e ti < t < t 2  (2.71)
o f

where

2y@

b-i

5 2 02
C = -f -

When the time is greater than t2 the entire liquid region has frozen and

the problem reduces to that of a single phase.

Cho and Sunderland (1969) also give a solution to the above problem if

two distinct phase change temperatures exist, with two different latent

heats. This solution will not be discussed here.

2.2 NEUMANN PROBLEM WITH VARIABLE PROPERTIES 6

2.2.1 Solid/Liquid Density Difference

If the density of the solid and liquid phases differ, as is usual, a 0

solution can be found with the similarity technique. This problem actually

involves convection in the frozen phase, due to the motion of the solid,

but it can be formulated as a conduction problem. A

If the density ratio is not one, then the problem can be posed 0

according to Figure 2.9. Reference frame x1 is attached to the free

surface of medium 1 and moves as medium 1 expands, assuming that PI/P2 < 1,

while reference frame x2 is fixed at the location of the original free

surface. The thickness of the solidified material between the original •

free surface location and the phase change interface is X2 . The solution

to this problem follows from the usual similarity transformation and has

been given by Crank (1975), and Carslaw and Jaeger (1959):

T2T1
at = =- 0 < x1 < X2  (2.72)
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TO~~~~~ ~ ~ ~ ~ - ----

T0

TSs

Figure 2.9. Freezing in a medium with

S, 2  variable density.

T1 (0, fI T (2.72a)

TI (X 1 ,t) f Tf (2.72b)

8T2  82 T2
= -202 X2 < x2 <- (2.73)at 3x2

T2 (X2 ,t) = f (2.73a)

T 2 (x2,O) T 0 (2.73b)

lim T2 (x2 ,t) T (2.73c)
x2 + OD 0 

.

3T 1 (X,t) aT 2 (X2 ,t) dX2  dX,
kl ax1  k 2 - -- 2 i p2t I f pit I (2.73d)

axa

The solution is

T, = T + (T - T erf(x1 /2'Iv't) 0 < Xi < X, (2.74)
s f s erfY

erfc(x 2 /2/E 2)

= T - (T - Tf) c(x2  X2 < x2 < - (2.75)0 o erf c (p 12V/i--'2

X= 2y/-a t . (2.76)

The parameter y is obtained from the following transcendental equation:
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(2 y2 _2
k2 1, 1 _2 _0exp~- 12CII2" e -

k2'o-i22ex(O12a22 _ _- 2 + V =0 •(2.77) %".

erfc(yVa 1 2 pI 2 ) erfy ST %,(7

The solution of eq 2.77 requires a numerical procedure, and 1 0

the number of parameters makes a graphical presentation of the solution

impractical. An approximate solution to the problem has been found, with .\1

the heat balance integral method, which yields an expression for y that

does not require numerical solution (Lunardini 1983a).

The approximate relation for y is -

y 2 =bi - V b 2  - 4aS T2

2a

where

2k2iPI2ST] 4 (Ok2iST)
2

b, 2S T [2 + ST + 2 + 2 1

r k21p1 2a =(2 + ST  [2 + ST + 2S T  2

This approximate solution will be in error by less than 3% for most

practical problems.

The effect of the density variation, on the Neumann solution, will be

small, unless the density ratio is quite small, as can be seen from Figure

2.10. , .

Constant density Neumann solution accurate
to within 6/. for conditions to right of curves.

- I I , I
Ice-water system (k,/k, = 3.68 a, /0 2  7.99).

6- Constant property system (k,/k2 = a,/a2 = 1.0)

S2=0 2 54- T 5"O 0

2- 2

100

'd
03 04 0.5 06 07 06 09 "2

Figure 2.10. Range of validity of constant den- 0
sity solution for 6% accuracy. .,-.
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The equations are valid for the thaw case except that region I is now

thawed and the total thaw depth is given by P12XI.

2.2.2 Variable Thermal Conductivity

Cho and Sunderland (1974) have extended the Neumann problem when the 0

thermal conductivity varies linearly with temperature. The equations are K
3T, a T1

C, x (k, x 0K < X X(t) (2.79)

3T2  dX a aT2C2 - + (P 2 P PL) c2 dXt yxT 2  (02rdtP2-P)C x~--= x (1c2 i--) x > X(t) . (2.80) W%'

The thermal diffusivities are
L - T

sa + (2.81)
o s

T2 - Ts

2 a (I + 2 T (2.82)
0 s

where a. and aL are the values of the thermal diffusivity of the solid

and the liquid phases, respectively, at Ts . The liquid phase does not

exist at T. and QL is obtained by extrapolation. The initial --

conditions are

T2 = T > Tf. x > 0 (2.83a)

and

X(o) - 0 . (2.83b)

The boundary condition at the free surface, x = 0, is

T1 (0,t) = T < Tf, t > 0 (2 .83c)
S|S

At the moving fusion front, x = X(t), two additional conditions must be

satisfied:

T - T2  - Tf (2.83d)

and r

T, T2  dX
k k2  Pit -(2.83e)

A modified error function is defined as follows. Consider a second-order S

nonlinear ordinary differential equation
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2- + 2n - 0 (2.84)

with the boundary conditions

0 (0) =0

o (0 ) =1 .

If the solution is designated as 08 (n), which can be called the

"modified error function," then by definition

d€O d€8O..

0- (1 + 808) d 8 i + 2n 0d (2.85)
ai dii dii =0

€8(0) =0

11(-) = 1

The function 08(n) can be found by a numerical technique such as the

Runge-Kutta method. Note that when B = 0, eq 2.84 becomes linear, and 0

*o(i) erf (n) 2 - e- dz

When the thermal conductivity varies linearly with temperature, and •

the property of the modified error function *8 (n) is used, the solutions

of eq 2.79-2.83 are found to be '- -

€(x/2 /-at) ,,

T= T + (T - T ) s (2.86)s 06€(y )

andi+

-0x P-+

2 Vsa2 (1 1+ 2a) Va12(0+82a)
T2 = T -(To-T) (2.87)

0 o f 1 O0(W

The constants Y, 6, C and a are determined from
6*a(Y) = 81 ef (2.88) 0

82(1 - a)

1I + 82a (2.89)

f -a
)= a(2.90)
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and %

f 1 + O 2 a fi -C2(1)l = 2h/ef (2.91)

where

C2 1 = C2 /Cl

= Y/P 2 1 /(0 + 0 2 a)0'2 1

kf (T0 - T )

kf thermal conductivity of solid at Tf

T f-Tf Tf T -T "

0 S

The phase-change location is given by

X = 2y/ - t (2.92)

The function can be evaluated with Figures 2.11-2.14.

The effect of variable conductivity on the phase change rate is small

unless 81 is large and h is small (the Stefan number is large).

Pedroso and Domoto (1973) have presented a perturbation solution for

the Stefan problem if the thermal properties are variable. The original

equations are

a- (k 'T) = pc - (2.93)
ax ax a =p(2.93a) 0!

T(O,t) = T (2.93a)
S

T(X,t) = Tf (2.93b)

T(x,O) = T f(2.93c)

, dX aT(X,t)
= k ax (2.93d)

The following transformations are defined:

Tf Tf
Z(T Tk dy c(T -T cd

k(f )=Jcf / 1 d

5525 S
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f" + lm f '( 0 (2.94)

dXo(o) 0 6 (1) =1 x¥ = 0,10) x(o) 0 k

where e' dO
dfl1

The perturbation parameter is the Stefan number:

c(T - T )
-f s 71

T

The temperature and function f are expanded as -,

N
6 = ST n  (2.95) 0

n=0n

o ~ + T~ [f."(6)e + 2f'(e )e2 +.

f = f( § ) + - f'(e ) T 2 + 2fo21+ (2.96)

General integral solutions are given for arbitrary functions of f (Pedroso 0

and Domoto 1973).

For the case where f a + bO the interface position for the first

four terms of the expansion is

= ' T T (2.97) :

T 0 T + S T ( T m I\ T 2 3 ( T T 3

where

T 1
0

= + b
T1 3 4

T _(45 + ab + 2
2 45 18 56

16 3 67 2 29 2 63 b3"3 "-a+ ab +- ab2 + b58

95 2160 1512 15680

This solution agrees very well with a numerical solution of eq 2.94. The

perturbation technique presented here is not applicable to two-phase

problems. Difficulties are encountered in obtaining a zeroth-order

solution or in obtaining a uniformly convergent perturbation solution.
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2.2.3 Variable Latent Heat

For many materials the latent heat is a fixed quantity or varies

weakly with the thermodynamic state. For soil systems, however, the latent

heat is directly proportional to the water content, and it follows that

latent heat may also vary since the water content can vary spatially.

We will ignore that all the water in a soil system need not change phase.

For simplicity, based on data for clay soils, Lock (1969) assumed that

the water content decays exponentially from the value at the soil surface.

The equations for a freezing system, initially at the freezing temperature,

are

92e =S ae (2.98)ay2  T aT

8(O,T) = -1

O(ET)= 0

ae (d) = f(E)

E(0) = 0

. = £of(y) =. e

0 0

where

T - T Pt
0 1 f 0=k~

c c c

t- = p c 2 (Tf S

e ke)

tc A

•A

c c

T = average value of T when T<

P =period of surface oscillation.

The zeroth-order, quasi-steady equation for the phase change interface

is

d ffi 1 (2.99) %
dr* f(t )"

The solution to this equation depends upon the water content function f. '_i
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If the water content is constant, then the Stefan solution results:
* =-(2.100)

With an exponential water content function 0

T* - 1 - l)e -  (2.101)

Finally, if the average value of the latent heat between the surface and

the freezing depth is used:

S* : i (l-e- ) (2.102)

From these results it can be noted that the time to freeze a layer -

1, for an exponential decay, will give a value that is about 50% that of

the constant latent heat solution and 85% that for an average latent heat

assumption. Some caution should therefore be used in applying the constant

or average water content solutions.

2.3 NEUMANN PROBLEM WITH VARIABLE TEMPERATURES

2.3.1 Exact Solution

An extension-of the similarity method was used by Tao (1978) to obtain

an exact solution with arbitrary surface and initial conditions. The

equations, for a freeze problem, are -, *,

320 t  Ot1

a1  - - 0 < x < X(t) (2.103)

axe at2a202 302  '

a2  - - X(t) < x (2.104)

O1 (O,t) - U(t) (2.105a)

e2 (x,O) - V(x) (2.105b)

0,(x,t) - 02 (X,t) Of (2. 105c)

a51(x't) 362(X,t) dX
ki - - k

2  - - p1 i-t (2.105d) -

where %!

S(x,t) - Ti - Ts , i - 1,2

U(t) - T(o,t) - Ts  .
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V(x) To (x) - Ts .

Ts  initial value of the surface temperature f To(O)

T =(x) initial temperature distribution in the liquid

The surface and initial temperatures are defined by S

U(t) 1 1 u tn/n! (2.106)

u t-nU) (2.106a)
n dt n -t=0

V(x) vn (x/,Va 2 ) n/n! (2.107)

v = (2.107a)

dx

Solutions to eq 2.103 and 2.104 are given by S

1 un U(4t) n G2n(ql) + n a n(4t)n/2 Fn(nl) (2.108)

e2 (4 t)n / 2 [unGn(n 2 ) + b inerfc n2 ] (2.109)
n-0 n

where Ti - x/(2 /- t)

The functions Gn, Fn, and inerfc, which are in the error function

family, are defined in Appendix D.

Let

X(t) 2/-91  c .
n -n (2.110) 0

n 0
n =o

These relations satisfy eq, 2.103-2.105b. The following set of equations

for an , bn , cn are obtained from eq 2.105c and d.

[N/2] N N [N 3] a2nB2nN(
UnA2nN(1) + anAn1) - 1) = ( 2 .lia)

N N
v nAn (W) + b BN(W) 0 (2.111b) %
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(N/21 N N N [N/21 N

uP (1) + aP (1) + anQ n (1) ."
n 2n- I nn + 2n 2n-

N N N N
-wi(k 2 1k1 ) v~ VPn (Wa) - b Q 1 (w)]

(P.1a1/k1)(N + 1)c .(2.1110)

N

From this set of algebraic equations, the coefficients an , bn and cn,

may be determined, step by step, starting from N = 1:

r= 1  
a at! a2

N = min (N -n,n) NO,

r + 2 + a..+ a = r ..

+ 2 + P N n.

N n n-r nIn)

-- 2 n (W 2_ ) i erfc(w c o )  la i aj a2!" ... aP c l  c2 ... cli -''

(2.113)
V2 (01c 0' 18 2 0

N 2n  r1P w 2 wGn-r (W 0 0!92... c, c2  -... c (2.114)
r..

112 m in (u,n) V
a1 + r... + = r

a1 + .a I... + , ,., N

N-n 0 2 ,
QnN(w) = 2n I (-i)ri n - r erfc (1C )  a I c2 a'C P

n (i) r=O 0rcW0  1! 2 !. OI!c c2  .c,

(2.115)
N$I. + 2 + ... + c 1 = r, 8O..

0 L + 20 2 +. + I8 8 N - n - 1 1 c214

The values of ao , bo , co t for N 0, are
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a = f/erf (c) b = (Of- Vo)/erfc (weo)

0 f o0 o f o 0

and co satisfies

a 0 1 (co ) + b0w(k2 1) j(wco ) = (2pcta/k 1)co . (2.116)

with

(-1)n 4 (n) = i erfe T , m > 0 . (2.117)

The quantity co is exactly equal to y of eq 2.10.

2.3.2 Variable Initial Temperature, Approximate Solution

The solution of Tao (1978) extended the similarity technique of

Neumann to a semi-infinite slab with arbitrary initial temperature.

Unfortunately this exact solution is such that numerical computations are

extremely difficult because of transient functions that require an

increasing number of series terms as time increases. Tao's solution is

perhaps best used to verify the accuracy of approximate and numerical

solutions or for short time solutions.

The heat balance integral technique solves the energy equation on

average over a space volume, instead of at each point of space. A

modification of the integral method utilizing a single integration over an I

entire, nonconstant property volume has yielded accurate solutions (Yuen

1980, Lunardini 1981a, 1982, 1983b).

This section presents an approximate solution to the modified Neumann

problem for which a linear initial temperature distribution exists. Such

an initial temperature is common for soil systems with a geothermal

temperature gradient.

Figure 2.15 shows the case of a slab of material with an initial

temperature distribution (G could represent a geothermal gradient). At

zero time the surface temperature drops to Ts and freezing commences.

The governing equations are
3 2 T1  3T1 .".,

= - 0 < x < X (2.118)

TL(X,t) = T (2.118a)
f

T1 (0,t) = T (2.118b)
S

b
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_ Figure 2.15. Freezing of a semi-

infinite region with linear ini-
tial temperature.

32 T2  a T2

*2 =-t X < x < X + 6 (2.119) .

T2 (X,t) = Tf (2.119a)

8T2 (X + 6,t)

ax G (2.119b)

T2 (X + 6,t) = G(X + 6) + T . (2.119c)

The integration of the energy equations over the region 0 < x < X + 6,

detailed by Lunardini (1981a), is a-.

dt [PIcIcL + P2 c 2 62 - P.LX + (P2c2 - Picl)Tfx

* aT1(0,t) a+) T+ G __ki 0t ' "

P2 c 2 (X + IT + - (X + 6)11 = + k2G (2.120)

x
e= f T(x,t)dx (2.121a) .

0

X+6 -

82 = J T2 (x,t)dx . (2.121b)
x

The energy balance at the freezing front can be written as two equations,

Lunardini (1981b):
3TL (X,t) 3T2 (X,t) 8Tt (X, t) p2Ti(X, t)

-kL [ 2 + k2 -- = pta - 2 (2.122a)ax x a)x ax - -
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20

3T1 (X,t) 3T2 (X,t) 3T2 (X,t) 
2 T2 (X,t)j2-k1  + k2 [ =P2 1*2 (2.122b)ax ax xx z  • '';

Quadratic temperature profiles in regions 1 and 2 which satisfy the 0

boundary conditions are

TT - T) x + X] (2.123)
f f s g

where

Q12 (AT + GX)X

g 8 [G(6+2X) + 2AT] + 1

(x-X)
2

2 = T + [G(6+2X) + 2AT] - X (GX + AT) - . (2.124)
f 6 "

In general, the simplest temperature profiles that will satisfy the

boundary conditions should be chosen. The accuracy of the method usually N
increases as the order of a polynomial temperature choice increases up to

some polynomial order (see App. B). However, the use of high-order

polynomials (third and higher) is often not justified since a small

increase in accuracy requires significantly more computational effort.

Equation 2.122b can be used to find a relation between X and 6. In

nondimensional form, this is

b2 [Y(b + 2) + 2]

o21(1 + a) + b[a(b + 2) + 2] -121 *[(b + 2) + 2]

202 (1 + a) S

STO(b + 2) + 2] (2.125)

where b - 6/X,

Equation 2.120, the energy integral equation, can now be written

nondimensionally as

r f Kda (2.126)

where 02 6

T )2 " ,.-) t

1+ 1 + c21 [1 +o + b+Ob'
3 S

T 6g
K- . (2.127)

1 (2 -k2)0

a g
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The derivatives of b and g can be found by simultaneously solving the

following equations:

k2 10 2 1  b [4(g - 1)
g,

20 2 S g
db T

b -- (2.128)
do 2(g- 1)2  1S T I --

g' 2 1 1 + o - 2b'[(b 1) + 11

b[o(b + 2) + 21 l  b[o(b + 2) + 2] 1)

+ b(b + 2)}] . (2.129)

The problem has now been reduced to a simple numerical quadrature of

eq 2.126 using the auxiliary relations of eq 2.127-2.129.

Unlike the Neumann solution, the frozen zone for the general case

reaches a steady-state value. At steady state, the net heat flux at the

phase change interface will be zero so that (dX/dt)t_ = 0. Then the

temperature in region I is

ATxA
Tw = --T-- + T (2.130)

At the solidification interface

ki -i- = k2G " (2.131)

Thus

AT (2.132) b-.tk. = k

or
%t- ,t

1y (2. 133) '"

Equation 2.126 was solved numerically using Simpson's rule (Lunardini

1984). The results are presented in Figures 2.16-2.19, as the ratio of a -ft

to the frozen depth for the Neumann case, ON It is possible to present

the results for soil systems, quite efficiently, since the property ratios

can be described as functions of the soil water content xj (Lunardini and

Varotta 1981). The property ratios used are given in Table 2.5.
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ST=0S
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2 - -- Figure 2.16. Ratio of
freeze depth to that

0 I 11111 111 1 1 1i 111 I i1I II ii of Neumann solution,
0.10110t 100. Xg 0.0.
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ST=0S
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Figure 2.17. Ratio of
0 freze deth tothat ZGo 0. o1 oo of Neumann solution,

x, 0.3.
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_-21 Figure 2.18. Ratio of
freeze depth to that

0 . 0 of Neumann solution,
0T0 0. 0101o 0.6.
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OAA

)I-I (water-ice)l
0}Figre 2.19. atio of.

freeze depth to that
, , , ,, , i l,,I , , I ,l, , ,, ,1, of Neumann solution,

oo10t o 100 x - 1.0, ice-water

T s~st0..1

Table 2.5 Frozen and thawed properties j

ratios, for soils, used with Figures 2.16
through 2.19.

0.4- kffkt a12  - cf/c

0 1 1 2-i

0.3 15031 1.9642 o an

0.6 2.2593 3.6470
1.0 3.8895 7.8685 ,

As was expected the ratio a/csN iS close tO 1 during the early ' '

growth, since the solution starts exactly as does the Neumann solution. As '

time goes on, the solidification rate for the general case decreases much

more rapidly than that for the Neumann solution. Under natural conditions='

there will be a temperature gradient for a soil system - the geothermal :

grdient. The effect of this gradient on the accuracy of the constant

temperature solution widely used is of interest for design in cold or

arctic regions. For soil systems the Neumann solution will be quite

acceptable even if the time is measured in years since T is still quite"--.
small; if G is large, then it will be necessary to use eq 2.126 with

appropriate property ratios. These can be interpolated from Figures e

2.16-2.19 if the property ratios fall within the ranges on the plots. The

effect of the initial temperature gradient can be compensated for, at later -

times, by using a temperature parameter *N with the Neumann solution as

N + 2k1 "(2.134),-- i
64 1

0.6 22593 .647



The results are also valid for the melting case if the initial

temperature decreases linearly with depth. The more interesting case of a

melting system with a temperature profile that increases with depth

(typical geothermal profile) is only valid until X + 8 AT/G. After this

time, melting will occur at both surfaces of the thawed zone and the

solution will not be valid.

2.3.3 Sinusoidal Surface Temperature

The Neumann solution is for a surface temperature that instanteously

changes to a fixed value at the beginning of phase change. Practical

surface temperatures will rarely be of this form and it is of some interest

to examine the relation between the Neumann solution and a sinusoidal

surface temperature. This variable surface temperature problem cannot be

solved exactly; however, an acceptable quasi-steady solution can be found.

Consider a system that is initially at the fusion value and then

undergoes a sinusoidal surface temperature variation: A4

3&T I T .
2T= 1 3T (2. 135)ax a at ".-

T(X,t) =Tf (2.135a)

2irt
T(O,t) = T s(t) -T f+ e8 sin (- (2.135b)

k d T(X,t) = + dt X (2.135c)

The sign in eq 2.135c denotes the thawing ()or the freezing(+

situation. The equations can be nondimensionalized by using

Tf _ 27r t
6e t P STa I

c c

y )A2x = kt)2X
c c c c

where 'i.

e =--

c(t ;(Tf - T

T s average value of T + when T ( Tf.
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The equations to solve are

S Be (2.136)
y2 -

ay Ta .T*

8( ,t*) = 0 (2.136a)

(O,T*) f 8(T*) =f-sinT* (2.136b)

-,, d I  (E1,T*)

* = + (2.136c)"' d T* - a;y ',

.?,.

10 = 0 (2.136d)

The solution will be obtained for the first-order quasi-steady equations.

These equations are described in Appendix A. The solution here will start

with freezing an initially thawed medium and then thawing the frozen

system. The equations for each of the phase changes are found, using the
0

properties of the frozen and thawed material. The effect due to the

difference between the maximum thaw and freeze depths will not be

considered. This will rot be a serious error if the Stefan numbers are

less than one. -

The solutions are straightforward (freeze starts at zero time) and are

e = 8 (T) (I - Y , +
s 2 sin L

* 2

STa T* 2T*1

y (y - 2 sin [2 sin - - sin (y + 2 sin - )] (2.137)

T * _S Ta CO T* _8 C3T*]
2 sin 2  [ + 2 s (2.138) ..

Equations 2.137 and 2.138 can then be used for 0 < T* < w with the

properties of the frozen and thawed material. WI

Lock et al. (1969) give a similar solution for the phase change•= * S Ta

2 [in 2 c sin sins* (2.139)

2 2 si2

However, this relation does not appear to be as accurate as eq 2.138,

although the values are not too different.
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.0- Sinusoidal 6

2. --- Step Change 1.0

1.6 -m -0.8

CLi04 0.6

Figure 2.20. Freezing of semi-infi- 0
nite medium with sinusoidal and 0 0.257 0.507r 0.75T 77'

step change surface temperatures. TTime

Seban (1971) noted that the even simpler Stefan equation gave I"%J1

acceptable results and also that the effect of convection due to density S

variation, in water, is small but may be important for some systems (see

Yen 1968).

The same procedure can also be used for other surface temperature

variations. If the surface temperature is not symmetric about the fusion

temperature the results are more complicated, but follow in the same way.

Equation 2.139 can be compared to the step change of surface

temperature, the Neumann solution. Using the approximation for y given by

eq 2.34, with a constant surface temperature equivalent to the sinusoidal

temperature, gives the step change solution as

2!+ ~ (2.140)IF+ S T

Figure 2.20 shows the freeze depths and the freezing rates for STa=

0.1. Notice that the total freeze depths, for the two surface temperature

cases, are within 1% but the freeze depths and, especially the freezing

rates, differ considerably at intermediate times. Thus the Neumann

solution will model a variable surface temperature if the total phase

change depth is desired but will not give comparable intermediate values

for the phase change depth or rate.

2.4 MELTING TEMPERATURE RANGE

Not all materials exhibit a fixed phase change temperature. For ,

soils, rocks, metal alloys, etc., melting will occur over a temperature

ranges *
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Region I Region 2 Region 3
Solid Solid Liguid

and Liquid

To 

Tfs - - -A.

TS:

- Figure 2.21. Solidifica-

tion with a mixed phase
X=X,(t) xX (t) region. p

2.4.1 Metals and Alloys

Cho and Sunderland (1969) give an exact solution for the case of a %

binary eutectic mixture. The method is outlined here. Tien and Geiger r

(1967) give an approximate solution when the mixture is initially at the

liquidus temperature. The system is described in terms of three regions

shown in Figure 2.21. A completely solidified region, an initially liquid %0%

region, and a region with both solid and liquid phases are formed by

isothermal planes at the liquidus (Tf) ana solidus (Tfs) temperatures.

The liquid begins to freeze at Tf and freezing is complete when the solid

front reaches the volume of interest. Equilibrium freezing occurs if the

element is completely frozen just as the solid front reaches it. Normal ,

nonequilibrium freezing is such that the element still has a liquid

fraction, which then freezes isothermally at Tfs before the solid front

moves on. The properties of the solid and liquid are assumed not to vary

with temperature and volume changes are negligible. The solid fraction

distribution, in the freezing zone, is linear with distance. It has a

value of zero at the liquidus front and f at the solidus front. For binary

eutectic mixtures, fe is the solid fraction at the eutectic composition. %

Tien and Geiger (1967) have shown that the linear assumption is not

important for the phase change process.

2.4.1.1 Exact Solution

The solid fraction is given by
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x X1
k%

x- xi h'-..

f f (I )X < x < X (2.141)
a e XX.

The energy liberated per unit volume when a volume of liquid changes to a
O

solid is

E IA dm f dmE - V = d (m fs) = (m - +fsdt
it V dt sdt

df
d - P21 a (2.142)

This will represent a uniformly distributed heat source in the freezing

zone:

P2 t 
fe dXL + x

E ex 2 [(x - x) - + (x- XI) - •
2t cit

The equations for this problem are N
2I 1 T1

0 < x < X, (2.143)

32 T2  P2I df 1 T2
+ is = 2  X < x < X (2.144)aZ k 2  d t a 2  a t "

a x > X (2.145)

ax 3  at

T3 (x,0) = T (2.146a)

T3 (f,t) = T (2.146b) % A,-

0

T, (0,t) = T (2.146c)

TL = Tf x X (2.146d)

T2 fT 3 =Tf x= X (2.146e)
fS

At the solidus front, the remaining liquid will solidify and the energy
balance is

8TL  8T2  dX1
k, - = k2 i- + Pl (1 - fe) x = X. (2.146f) S
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At the liquidus front the solid fraction is zero and the phase change for

the freezing zone has been accounted for by the energy generation term. N

Then, only equality of heat fluxes is required:

3T2  aT3  0
k2 i-ffik 3 ax x = X . (2.146g)

The solution is an adaptation of the Neumann method except that there are

two parameters defined as

X1 = 2 * V-at (2.147)

X=2 y a-t • (2.148)

The parameters * and y must be found by the simultaneous solution of the

following equations:

Xfe _2 2
_2 k21 f £ k21 (T - + Cp2) e

e +_ef__________ eTfs
erf 2 CP2 (Tf - T) (y -4') /-i(Tf -T )(erf Y 2 - erf t a12

erfs 4' (efs ~ ~ efii~

e (2.149) 0
Cp1 (Tf - T)

2L- X2c3 .

(Tf - Tf + I fe/Cp2)e af YQ13ee
f____ __e_____ ____ ____e (T__Tk32_____3_

(erf YV-2 - erf '--) 2 CP2 (y - ')= (T-Tf)k3 2  e r yj

(2.150)

The temperatures are given by

e r f ( x _ _ _.
T1 -TS 2/a-- (24151)

T -T erf4,
fs s x

T2 - T fe 

Tf -T s  CP2 (Tfs- T )(Y-, .

[erf ( x ) erf -- ] 2.
(T - Tfs + f e/CP2 ) 2c-2 t

+ (2.152) I
(T -T ) erf yV - erf % j

fs 05
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x0
erfc(x -

2/ cg3 t S

T3 - T -(T - T) . (2.153)
o efrc a

2.4.1.2 Approximate Solution

Tien and Geiger (1967) presented an interesting approximate solution

to the preceding problem. The initial liquid temperature is at the

liquidus temperature, thus there are only two regions to consider:2 -

1 u1x3T1 (2.154)

x L at X

a2T 2  p21 df DT2
+ -+ X, < x < X (2.155)x 2  k2 dt aL2 at

T1 (O,t) - T (2.156a)

TI(X,t) - T2 (Xt) - Tfs (2.156b)

T2 (X,t) Tf (2.156c)

aTi aT 2  dXj .

kj y-, k- - a ;kxX I  (2.156d)

T2  
x

ax 0 x = X(2.156e)%%

df x - X
d f df e i-Xt (2.156f) 6.

where

AX = X - XK (2.156g)

The solution in the solid region is given by eq 2.151:

erf( x
T1 - T 2a I t

T T erf,Tfs 8

where, as previously, .'-*

X1 - 2* Va-t

In the mixed phase region, the heat balance integral method is used. The
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heat balance equation is given by -.

I d82  dX dX1  aT2 (X,t)1 .[- T (X,t) dX + T2  (X , t) - f x'.

02  dt -T 2  -t 1 'dt ax

3T2 (X1 ,t) P2tfe I dAX dX1
ax + k2  

+  (2.157)

with
~x

82 f T2 (x,t) dx (2.158) .Xl ..

A quadratic temperature profile is assumed, which satisfies eq 2.156b,c,e

2ATf ATf

T2  T + (x - X) - (x - XI) 2

fs AX(X)4

where ATf - (Tf - Tfs).

Equation 2.158 is then

(1 + - f  dXj +f 21a2 2a)e I + e d A X'.
c2  f (AT 7c-- f dt AX (2. 159)

With eq 2.151 the boundary condition eq 2.156d yields a second differential

equation:

(Tfs - T ) e 2/a- 2k2 ATf dXj

erf 2AX + -(0 .d (2.160) .
*I

The following equations will be used

- 2 "/aiT

AX = 2#,/ZT . (2.161)

Inserting eq 2.147 and 2.161 into eq 2.159 and 2.160 yields the equation

for # and *j, the solutions of which are

- (Tfs- T) at2 L(l - ) (2.162)
k12

ATf / erf 4 c2ATf
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e___ - B3 (2.163)4.. -,,
B. er

B2 erf erf

where

Bl = I a-- f
B=1+ __ e

c2YTf

B2  k 1 2
AT
f

1 0 f "
e .

B3 = 
02T

f
Bfi( + 2c2 ATf 'a2L

2.4.2 Soils 0

While many materials undergo phase change at a fixed temperature, soil

systems exhibit a definite zone of phase change (Lunardini 1981b). The

variation of unfrozen water with temperature causes the soil system to

freeze or thaw over a finite temperature range. Exact and approximate S

solutions will be described for conduction phase change of plane layers of

soil with water contents that vary linearly, quadratically, and

exponentially with temperature. The temperature and phase change depths

are found to vary significantly from those of the constant-temperature or -

Neumann problem.

At any temperature below the normal freezing point, unfrozen water,

ice and soil solids will be in an equilibrium state. Figure 2.22 shows

the unfrozen water as a function of temperature for a typical soil. At S

SThowed"- "

_ _ _ _ _Figure 2.22. Unfrozen water vs

Tm Tf temperature.
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Tf all of the water is in the liquid form, while at Tm the free water

is all frozen. There may be a residual amount of bound water that will

remain unfrozen even at very low temperature, denoted by Ef. We will

assume that for T < Tm, unfrozen water may exist but no phase change will S

occur. The region Tm < T < is called the zone of phase change or

the mushy zone. In this region water will solidify to ice and unfrozen

water and ice will coexist. The form of the E function for soils can be

expressed in various functional relations. The simplest relation is a

linear one:

= + (T - T (2.164)

m .

where At =o - &f and ATm = Tf - Tm 

A function that more closely approximates the soil water data is an

exponential form:

a, e b1T + d1  (2.165)

Another functional relation, which can closely model the data, and is easy

to manipulate analytically is a quadratic form:

a2 (T T f) + b2 (T - Tf)2  (2.166)

2 A Lotent2 __ Heot .
a2=AT

2 -2 Figure 2.23. Heat %J'-',A T
m flow in mushy zone. X x+AX

If to, f and ATm are the same for all of these functions, then the

5' mean unfrozen water slope, dE/dT, will be identical. NS.I
Consider a small volume of material within the mushy zone as shown in

Figure 2.23. Energy will be conducted in and out of the volume and latent

heat will be released during solidification. Thus the problem is one of

conduction with a distributed energy source. The energy released due to

solidification of a mass of water Amw is a,; follows:

EX - Am = -X Yd A& A Ax . (2.167)

The energy equation then becomes

T(k aCT (2.168) A
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The thermal conductivity and the specific heat are functions of the %

unfrozen water and may be represented by

'S.
k = k + (k - k ) (2.169)

f t f~ (209

C = C + (C - Cf) (2.170)
f t f~ 0_.,

where kf, kt are fully frozen and fully thawed thermal conductivities,

and Cf, Ct fully frozen and fully thawed specific heats, respectively.

Clearly these properties are functions of the particular form of the

unfrozen water function (Frivick 1980).

2.4.2.1 Exact Solution for Linear Unfrozen Water Function

If & varies linearly with temperature, then an exact solution may be

found. Although this will be a poor representation of a real soil system,

it will constitute a valuable check for approximate solution methods.

Assume that k and C vary from one region to another but are constant for

each region.

The most general case will be a problem with three regions as shown in

Figure 2.24. The equations for the three regions are

2 ar
a T1  1T 3

a0 (2.171)Phase Chan Phase Change T.To "

T, (O,t) = T (2.171a) f

T1 (XI,t) = T (2.171b)

9)TL  (XL )  T2  (XI )
mX

ax 21 ax (2. l71c)
Figure 2.24. Geometry for solid- %.%
ification with a phase change zone.

X= 2 n al t (2.172)

The energy equation for region 2, the phase chan e region, can be written %%

in the same form as eq 2.171 since & is a linear function of T2 , and it

follows from eq 2.167 that
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32 T2 1 3 T 2

3 ~ T2 2
(2.173)

ax 2  4 It

T2 (XI, t) = T (2.173a) Sm S W

T2 (X, t) = Tf (2.173b)

aT 2 (X) aT 3 (X) = k32%

k} x(2. 17 3c)ax32 a x

X = 2 y Va'4 t (2.174)

C32 01
a 2 /aL = 1 + (2.175)

STm K)

a2 T3  1 aT3  (
x 2  a3  t(2 .176 ) k

a ~2 a 3 at

lir T3 (x,t) = T (2. 17 6a)

T 3 (x,O) = T (2.176b) .0,0

T3 (X) = Tf (2.1 7 6c) K

where .

C3 (Tf - Ts )
S f S

Tm Yd t A

TT
0 f

T -T
f s

T -T
0 1 T f T m " S

f m

The solution to these equations follows as a similarity solution:

T1 - T s erf \Al2 jJI t0= ,x, 2-.-1 t)(2. 177) '
T - T erf
m 5 /K
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T2 -- T. .

- Tf = erf (x/21t- t-) - erf y (2.178)

AT erf y - erf (a-- 4) P

T3 - T
o0 -erfc (x/2a 3  0 (2.179)

TO  Tf erfc (V, 3- Y)

The unknowns 4 and y are found by using eq 2.178c, 2.154c:

(Tm - T ) e- 2  -k 2 1 vaj, erf n-

A T
m erf Y - erf ( --

AT V-e Y2 (1 -L4 er Y-)m Tf 3  (2.181) %
T - T
o erfc ( Y/ ')

Equations 2.180 and 2.181 can now be solved simultaneously for 4 and y,

which completes the exact solution. Lunardini (1985) compared the solution

to the Neumann solution for specific cases.

We let

T 0= 4C T = -6 Tf 00 C OC

k,= 0.00828 cal/s-cm *C a, 180.6546 cm 2/hr

w 3
Fo = 0.20 gs Yd 1.68 gl/cm

o d s

k2 = 0.00703 Q2 = 153.3818 k: -:

&f = 0.0782 £ = 80 cal/g

k3 = 0.00578 a3 = 126.1091 AE = 0. 1218

C1 = C2 = C3 = 0.165 cal/cm 3 aC
ft.'-

ST = 0.0605.

Table 2.6 shows the effect of changing the width of the phase change zone

by varying Tm.

Figure 2.25 shows the temperature profiles for the gradual and

instantaneous latent heat cases after 24 hours. The Neumann solution has a

temperature that always exceeds the gradual case and is significantly

different within the zone of phase change. For a linear water content
77% _
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Table 2.6 Effect of phase change temperature, Tm, on solidification of a
soil (from Lunardini 1985).

Case T M_ y X* (cm) X1* (cm) AX - X-X1m S

1 - 4 0.0617 1.395 33.33 8.13 25.2
2 - 2 0.1135 1.6614 28.34 14.95 13.39
3 - 1 0.1376 2.062 25.0 18.12 6.88
4 -.5 0.14922 2.6965 23.27 19.65 3.52
5 -.1 0.1571 5.058 21.41 20.69 0.72

Neumann 0 0.1606 --- 21.15 21.15 0

*For t =24 hours.

2 - N e u m a n 
n -

0 - t Loren, Heat

K 
-I•

U

Phase Change LineorC t

0 20 40 60 80 100
Distance, x (cm)

Figure 2.25. Temperature in three zones, 24
hours after initiation of freeze.

function, the Neumann solution can be quite different than the actual .'

Ssolution.

2.4.2.2 Heat Balance Integral Approximations

Approximate solutions for several unfrozen water content functions may

be obtained with the heat balance integral method. In Figure 2.26, the

governing equations for the two-zone problem, with Ts > Tm, are

X~

C' [3 axa -3- f T2 dx - Tf - (2.181)
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-a f T3 dx -T -+ T , (2.182)
T2 ax 0 dt f d"

The boundary conditions are

TS x T2(0,t) - T (2.183a)

T2 (X) T3 (X) = Tf (2.183b)

Figure 2.26. Two-

zone geometry for 
.(X

heat balance integral. x ax'ax f k32  (2 .18 3c)

T3 (S,t) T 0 (2 .184 a)

8T3 (6 ,t)

ax =0 . (2. 184b)

Quadratic temperature profiles which satisfy the boundary conditions are

given by 5

T2 = Tf + b (X-x) + c (X-x)2  (2.185)

T3 = T + (T - T ) (6 - x)2  (2.186)
0 f 0 (d-X) 2

where

c X (Ts - Tf) -bX 5

k 3 2 (T - T )
b -2 (6 - X)

Using

X = B x (2.187)

the solution for y follows directly as

B 2 k 2 3 .3 a43 (B - 2 k32 *) (1 + -1 -I o (2.188) %'

2 f 1 (2.189)

B(I +  - .) a.4.

X= 2 y/4 t • (2.190) 0

I



For the same example problem as before, with Tm = -4*C, the heat balance

integral (HBI) solution may be compared to the exact solution. I

Let

T - 4*C T = T = -4 Tf =0
0 s mf

k2 - 0.00703 cal/s-cm -*C C2  C3 = 0.165 cal/cm3 - C

k3 - 0.00578.

Then

Exact solution y = 1.23645

RBI solution, eq 2.189 y = 1.29942.

The heat balance integral solution is within 5% of the exact solution.

This accuracy is typical of the heat balance integral method and gives us

confidence to apply the method to problems for which exact solutions are

unavailable.

Exponential Unfrozen Water Function. If the unfrozen water has the

exponential form discussed earlier, the equations for the two regions are _

a T2  a
k2  - = - (C2 T2 + 

Y  ) (2.191)

82 T3 1 3 T3
S "(2.192)

3 2  Q 3 3t

The heat balance integral equation for region 2 is+xdS

k2 ax a dt (C2T2 + t -Yd E) dx

0' %

-(C2Tf + I Y (2.93
f d o dt(213

while eq 2.182 for region 3 is still valid.

Unfortunately the exponential form of eq 2.165 can only be integrated -r"

if T2 is a linear function of x. For use in the function only, we shall

assume that

(Tf - T)
T2 = Tf (X-x). (2.185a) -",

Then

a2e (X-x) + di (2.185b)
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where dI
2 o 1_'A

b (T -Tf) 6
b I s f %

2 X

For use in eq 2.193 and 2.182 we assume the usual quadratic forms for the

temperatures. With these relations we can find the differential equations

for X and 6:2 a2 2.[2dfkq2 X
x a - = -dt 3(6 X) 3

C 2 3  [n R + d, I ] X} (2.194)

= 1 d 6 + 2X) (2.195)

where

s -d,
R _o- d_

0

bI T  -, N,

S =al e + d, 1'1 s
5%

With the relation 6 - X = BX, eq 2.174 and 2.175 become

* B + 1 + 320
-a23 - 2 k3, 2 B (-+ k1) + +-B 3 3B 3

1 0

C23 ST + d - &o] (2.196)

Since

X =-2 y (2.197)

then "' '-

21y2 - B ( + 1) a3 (2.198)
Y3

This solution can be compared to the previous cases. The water content

,%%
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function will have the same limiting values as for the linear case. Then

a, = 0.1278

b, = 0.763

d, = 0.0722 S

Equations 2.196 and 2.198 give y - 1.0246.

The exponential solution is 21% less than the linear case. Thus the

form of the unfrozen water content function will be significant. Since the

solution of this section is somewhat suspect because of the use of a linear e

temperature profile for the water content, a solution with a quadratic "

function will be examined.

Quadratic Unfrozen Water Relation. A quadratic relation can represent

the unfrozen water content with acceptable accuracy. The relation can be

given as

= + a3 (T - Tf) + b3 (T - Tf) 2

where a 3  -_ b 3  ) 2

The heat balance integral forms of the energy equations are

[ 9A)- T " (cT + ''d € dx,.

dX-(C 2 T f + t Y d do (2.199 0
aT(X)d d6 dX-a3 - - f T 3 dx - T + Tf (2.200) 'j

a x o dt dt

Substitution of eq 2.185 and 2.186 into eq 2.199 and 2.200 leads to

2 C32 *( - (3 +2 + 1PL +

+ 2 [2 + P, ( + 1 P + 3] =0 (2.201)
ST  5

2 kj9~
where PI W B

As before, X- 2y /- 4 t
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Table 2.7. Effect of F function, To = 40C, Ts = Tm -40C, Tf 'Ak
OC, k2 = 0.0C703, C 0.165, Eo 0.2, AE = 0.1218, k 3 2 = 0.82219, C3 =

1.0 (Lunardini 1985)

Difference from X (t = 24 hrs) S
Solution y linear E (%) (cm)

Exact, linear F 1.2365 - 4.8 29.54
H.B.I. - linear E 1.2994 -- 31.04
H.B.I. - exponential F, 1.0246 -21.1 24.48

H.B.I - quadratic E 1.1561 -11.0 27.62
Neumann (F, step function) 0.7846 -39.6 18.74

Then .,

y2 =PI a3 (2.202) 0
2 k3 2  (~ 2 k 3 2 p + i)

The solutions may be compared as shown in Table 2.7.

Nakano and Brown (1971) solved a version of this problem numerically.

Their results showed a significant effect of a freezing zone on the temper-

ature profile but the magnitudes of the differences did not follow those %

shown here. The reason for the difference cannot be explained since the

numerical computation method was not given in adequate detail.

Lunardini (1985) solved the above cases with variable thermal proper-

ties and showed that the property effect could be accommodated with the

constant property solution.

2.4.3 Finite, Insulated Slab

An approximate solution to the finite, insulated slab problem is given

by Cho and Sunderland (1969). The method follows closely the results of %

Section 2.4.1 with the geometry noted in Figure 2.27. The equations, fol-

lowing previous notation, are

a 2TI1 aTl '

2  0 < X < X1  (2.203)
ax2  a at

a 2T 2  
P2Z df 2

s 1 3 T2

1 .. .-+ X < x < D (2.205)

3x2  a3 at (2.05

"Y
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T0 -

XIX Figure 2.27. Phase

change regions for
Xto xz D finite slab.

T3 (x,O) =T (2.206a) *. ~
0

ax(,t (2.206b)
-~-o0

T1(0,t) T (2.206c)

TL(XI,t) -T 2 (XL1 t) T (2.206d)
fS

T2 (X, t) T3 (M t) Tf (2.206e)

k, j-~ - k2  -ax + PL I f (2.206f)

k2 a2Xt -I 3 T3 (2.206g) r.

3T3 (8,t) 0(.0h

T3 (6,t) -T (2.2061)
0

The usual assumptions, as follow, are used:

XL 2y1W(t

X 2y/n

The exact solutions for regions 1 and 2 are given by
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erf
T- T 21alt .

s . ~~(2.207),,' -' ,

T - Ts  erf,

T2  T s £fe ( - -x )

'Tfs -T s  c p 2 (Tfs - Ts)(y-*)

(erf x erf 0 2)

Tf+ Tfs+ e 2__2-'- _(2.208)___'_______

+ (Tf - Ts) erf y/ai-2 erf /--2  " 228

The heat balance integral for region 3 is again

de3 d6 dX aT3 (Xt)
d--- To-+ Tfdt ax -0 (2.209)

6

3 =f T3 dx
x

The fourth-power temperature for region 3 is •

T3 = T - (TO - Tf) 4x,.

Then from eq 2.209,
5 F/Y2 +8,

0 - y = " [-Y + Y+ a31 (2.210)

The equation for * follows directly from eq 2.206f

fe 2'""

2 k 2 1 f et£ k2 1 (Tf - Tf + C p2e) e 1
e _e. f e

ef 2cp2(Tf - Ts)(y-p) v- (Tf - Ts)(erf Ya-- - erf 4"a12

VW (I -fe £..,
e (2.211)"-

C pl (Tfs - Ts) (2.21))

Equation 2.206g leads to

-ife 2(T - T + c 1 e- 2 a 1 2  4k 3 2 (T -Tf)

e 2~f Tf +c 2 )c 1 2  32 f
c2  (,~ - B-~ *(2.212)

85w (er n.12* a2
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The simultaneous solution of eq 2.210-2.212 will give ', y, 1. The N .N

temperature of the slab at x D follows exactly as in Section 2.1.6.2:

T3 (D,t) - T -(1+c) c(- -)
T f e b t < t < t2  (2.213) 5

where 
r

ba a

b I Y " " '

.: .0

5 2
c 2 . S

2.5 SUBCOOLED LIQUID - FRAZIL ICE

A problem of some practical interest relates to the freezing of a

liquid, initially below its fusion temperature, as shown in Figure 2.28. 0

The liquid is in a metastable state and phase change results in the release

of latent heat which warms the liquid to its normal fusion point. The

solid phase remains at the freezing temperature. This can be related..

physically to the formation of frazil ice from water that supercools due to

turbulence. The problem mathematically is

T, = Tf (2.214)

.2T2  1 3 T2

lim T2 (x,t) T 0

(X,t) = Tf Solid Sqbcooled Liquid % %

3T2 (Xt) dX
k2 3x =P2 I

The solution follows directly as T-----

(T- To ) erfc
(f o0/~2

T2  erfc (2.216) Figure 2.28. Geometry for 0
subcooled liquid.
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X = 2Y (2.217) I

yerfc (y) e 2 (f (2.218)

2.6 SOLIDIFICATION IN CONTACT WITH COLD WALL 'I.

The freezing of liquid in contact with a cold wall is of importance in

casting metals and in the intrusion of magmas during geological processes.

At time t = 0, a semi-infinite liquid at To is brought into contact with

a semi-infinite cold wall at Tc . *A solid phase forms instantly and grows

with time, while the temperature between the cold wall, and solid phase

remains constant (see Fig. 2.29). The density of the solid and liquid

phases are assumed equal:
2 Tw 1 w x 0 (2.219)

ax a at
w

a - 0 < x < X(t) (2.220)

ax at at

a T2  1 T2

- = - x > X(t) (2.221)

ax a2  at I

T =T S
I w

x0 ."

3T , 3 T 8 w 'V
k, x = k w x, --. ,

lx w ax hx Mt-

Tf

Cold Wall

Solid Liquid
T, "T?%

Figure 2.29. Freezing against 1a cold wall. ,=0o x X M
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lhm T - T-
X+-4 W

T (x,O) - Tw C

1 2 - Tf P2

dXT2  dm

lum T2 = TO
X+QD 0

T2 (x,0) = T
0

The solution follows from the usual similarity transformation:

1 - eric ( x2 ) '-

Tw - Tc eric ( -x )(2.223)
T -T T 2Va-

e rf ( x- - )

s 2 ~ = 2/(2.224) -
T - T erfe Y

X = 2 = erfc - (2.225)

| ~The energy balance at the interface yields the equation for Y: '-

-,Y _2 k / 4-2 fe~f" 2 2

~e k2 y':s2erf t eric (,-2) S T

SThe interface temperature between the cold wall and the frozen liquid is

T + T k- erf "Y,T -= = e (2.227)

s I + k w erf Y

Since the interface temperature is constant, the solution will be identical

88S
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to the Neumann solution with the same surface temperature. The results are

also valid for melt near a hot wall if ST = c1 (Ts - Tf)/1 and region

1 is thawed or liquid.

2.7 THAW WITH CONSOLIDATION OF MELTED MEDIUM

An interesting problem arises because some porous media, such as

soils, can become more compact after thawing. A certain amount of the

water in the frozen soil is forced out as the solid particles settle and

the thawed soil becomes denser. The situation is similar to the variable

density problem of Section 2.2.1. A further complication arises if the p.1
densities of the solid and liquid phases are different. Consider a frozen

soil system, saturated with water, as shown in Figure 2.30. The initial

temperature is To and the surface temperature suddenly drops to Ts,

which is below the fusion temperature. As thaw progresses, pore water will

be forced out of the thawed material due to the thaw strain, which proceeds

such that the interface between the pore water and the thawed region moves

at the velocity

dX3

u = A' -- (2.228)
dt

where A' is soil strain due to thawing and X3 total depth of thawed

material. A velocity is induced in the pore water by the density

difference of ice and water. The water surface moves at the velocity

dX3

u= (I -pw) dt (2.229)

T at t=O

Void Due to Density Effect x3  Fixed S

T , V, =0

X1  (D Excess Pore Water

V2~ (u2 -u, = A
,dX3

X2  Water and Soil Solids x2 %

( FrozenSoil Solids Plus Water "d

Figure 2.30. Geometry for thaw settlement.
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where piw is the ratio of density of ice to density of water. Three co-

ordinate frames will be used:

1. x3 - stationary coordinate frame at original surface of frozen

soil.

2. x, - moving frame attached to the upper surface of the excess pore

water layer.

3. x2 - moving coordinate fixed to the moving interface between the

water and the thawed material; the soil solids are stationary rel-

ative to x2.

The basic equations for the pore water T1 , the thawed compacted soil T2 1

and the frozen unconsolidated soil T3, are given below:
@

31T1  aT 1
0 < x (2.230)

ax1 2 L at i X

TI(°,t) - T

T(Xt) k T2 (O,t)
1 ax 2 ax

Tl(Xlt) - T2 (O,t)

2
} T2  pw aT2  aT2

a2 2  v - =- 0 <x 2 <X 2  (2.231)
2 x2  P2c2  2 ax 2  at - -

The pore water velocity, relative to frame x2, is

dX3
v= -(u 2 - u 1 ) -A -- (2.232)

where A A' - 1 + Piw"

A similarity solution for this region will only work when the thaw is

proportional to the square root of time:

T2 (X2 ,t) - Tf

T 2  T3  (XdX 3

-k (X2  t) + k ( ) (2.233)
2a2 ( 2 9t 3 ax 3 3t) -P 31. dt
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2T3 1 3

2x a x3  A 3  X3 S(2.234)

T 3(X 3 't) T Tf

T 3(x 3,O) To

lrn T (x3,t) =T .

x 3 '

The following relations will be useful:

X= AX3

= (1 - A')X 3

The solution to the set of equations follows from a similarity

transformation:

T =T + B erf 1 (2.235)%
1 5 2/a 1t%

x
T 2 =A 2 + B 2 erf( + Ky) (2.236)0

2V

x3
(T - T0) er 2V .. J

T 3=T 0+ rf / 3t (2.237)
3 o erfc (Y/'i2y)

3 2 %

A =T + p (T -T)
2 s 3 f s

T - T
f 5

B=

B p (Tf Ts)

2 2 2
Y (A a 2 1 -K)

p1  k2  12a e erf (A-(-) erf Ky
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P 2  erf [y(K + 1 - A')]

P + P2

- y 2(A a -K)2
k 21/012 e 2 )

P4 ="P + P2

2
22-Y a 23 ""

-Y2(K + I A') 2  k e a2 3  P3 2  (23

Pi + P2 erfc (y/ 23) ST (2.238)

where

K -- c w- A •Pc2

Nixon (1975) examined the case of a soil initially at the fusion

temperature in which the excess pore water vanished instantaneously as it

was formed. However, in that study, the interface boundary condition was

applied inappropriately, leading to erroneous results. Physically, the

vanishing of the water layer is equivalent to an infinite thermal

diffusivity for region 1. The equations then reduce to

(Tf - Ts)[erf ( 2 + KY) - erf Ky]

T =T + 2 (2.239)
2 s erf [y(K + I - A')] - erf KY (

2-- -Y a2 'IX
2 2 2(K + 1 - A') k 3 2 2 3  e ffy P3 2  -erf [y(K + I - A')] - erf Ky erfc yVa - T * (2.240)

23

The equation for the frozen zone does not change.

If A' = 0 and piw = 1.0, the above equations reduce to the familiar

Neumann problem.

Table 2.8 lists some calculated values for the thaw parameter. The

thaw depth is controlled by the thermal resistance of the thawed layer and

the excess water rather than the convection. As the soil consolidates, the

conductive resistance to heat flow decreases and this effect is augmented

if the excess water layer is neglected. With no water layer, the thaw rate
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Table 2.8. Effect of convection and conductive resistance on thaw of
strained soil, ST 1 1.0, 0.0.

y(Neumann a

A' iw K Excess water layer y y (Nixon 1975) Solution)

0.35 1.0 0.5 Absent 0.7384 0.5771 0.6203
0.35 1.0 0.5 Present 0.6078 --- 0.6203
0.35 0.92 0.386 Present 0.6413 --- 0.6203
0.50 1.0 0.714 Absent 0.8276 0.5618 0.6203
0.75 1.0 1.071 Absent 1.4119 0.5386 0.6203
0.75 0.92 0.957 Present 0.6388 --- 0.6203
0.90 1.0 1.286 Absent 1.7821 0.5248 0.6203
0.90 0.92 1.171 Present 0.6450 --- 0.6203
1.0 1.0 1.429 Absent --- 0.5152 0.6203

Property ratios are unity except as noted. •

exceeds the Neumann case by 18%. For the same case with a water layer, the

thaw lags the Neumann case by 2%. This shows the actual minor effect of

the convection. With the Nixon (1975) result the thaw lags the Neumann

case by 7%. This is unreasonable since the thermal resistance of the

system is less than that for the Neumann problem, and thus the thaw should

progress at a more rapid rate.

The conclusion of Nixon (1975) that convection has little effect is -

correct. Of course the convection for this problem is minor and should not

be confused with convective flows which are independent of thaw strains or .

density differences.

Figures 2.31-2.34 are solutions for typical soil systems where x, is

the volumetric water fraction of the media.

2.8 Freeze of a Flowing Fluid

The freezing of a river with convection from the water to the ice or

the solidification of a fluid flowing in contact with a cold wall at

constant temperature can be estimated as follows. As shown in Figure 2.35 ,

the fluid contacts a cold surface at constant temperature Ts. The .- "*

surface could be a thin wall with zero heat capacity. For a wall of finite

capacity a solution is given in the next chapter. Energy flows from a warm

fluid at constant temperature T, and with a constant convective coefficient

h. The problem is

-t a T (2.241)
at a
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Figure 2.35. Freezing with convective
heat flow from liquid region.

Pt d k 3T(X,t) i(T T(2.242)

1"I
dx I

dX~t TXt (2.243)

.vA

T(0,t) =T s  (2.244)

The steady state solutionis

xs = T a (2.245)

The equation can be nondimensionalized as-

ff au- (2.246) .

dS aUl(S,T•' )
d ff) 1 (2.247)

U(0,T') = 0 (2.248) %

U(S,T') 1 (2.249) :%

where ,V.-.

T- T h i  - Tf)t X x
U=T -T PA X X X

f s Xs s s

A perturbation method will be used with an expansion of the rate of change 0

of the phase-change interface; thus the time variable will be replaced by

S. Then eq 2.246 becomes N,

92U(C S) aU(, s) (2.250)3C2  Sg as
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g d (2.251)

Now the temperature and the phase change interface speed are expanded in

asymptotic series with the Stefan number as a parameter: 0

U(;,S) = T Ui (;,S) (2.252)-
i=O

N =
g(T' I S Ti 91(TV )  (2.253) "

Substituting these equations into eq 2.247-2.250 yields the following sets

of equations:

2 i = 0

a U _ _ au 1>0 (2.254)

ac 1 11J-1 as

• 1

9 (2.255)
aU (S) >( i' > 0

U i(0,S) 0 (2.256)

1 1 ;0

Ui(S,S) (2.257)

The phase change interface can be found by inverting eq 2.253 and

integrating term by term to obtain
N

= STi T  (2.258)

1=0

The relations for Ti as functions of gi are given in Appendix A. The

solutions for the first few cases are as follows:

U =  
(2.259a)

0 S

I-Sg =- (2.259b)

T= - [S + ln(1-S)] (2.259c)
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u - -(.s) _ s

U 1-S) (C2 S2 (2.260a)
1 6S

= - 1 (2.260b)

Tl jj3T (2.260c)

U go 3-2SS (L9-s) (2.261a)2 12S S 10 3 56

go (7-3S)
g2 = 4- (2.261b)

124

= [3S2 + 2S + 21n (1-S)] (2. 261c)
2 -90-

= 3 [8S3 - 21S2 - 10S + 10 in (I-S)] . (2.262)"3 fi 1890

Seeniraj and Bose (1982) developed this method and noted that the
.. .

interface position S compared very well to analytical results of Savino and

Siegel (1969) and numerical results of Beaubouef and Chapman (1967). • .~ .*
I

Lapadula and Mueller (1966) used Biot's method to obtain the following

result: F

2 ST2 + 10 ST + 15
T f - 5(3 + ST ) [S + in (1-S)] . (2.263)

This agrees well with the perturbation solution if ST < 1-0. -

%-.

NOMENCLATURE- CHAPTER 2

A' thaw strain of soil

b 6/x ]
B S/x-1 .

c specific heat ",. "

C pc, heat capacity or volumetric specific heat
c1 2 cI/c 2  . ]-

D thickness of slab

Ex energy liberated during solidification .. '.

fe solid fraction at eutectic

solid fraction .
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'- ,.d't,

g dS/dT, dimensionless phase change interface rate of movement li

G temperature gradient

surface coefficient of convection

If'It index for freeze or thaw S

surface index

k thermal conductivity

kL2 kL/k2

K PwCw(A 1
2 iw

I latent heat of fusion

L p£, volumetric latent heat

m mass

n ratio of surface to air index

q heat flux rate

p,q,r property ratios

p period

R ki/k w  %

S x/xs

-(Tf - T freeze

ST
ST c 1.%,

-(T -T) thaw
I s f

C3  (Tf - Ts) ,, ...

STm Y d t A

t time

T temperature

Tc initial temperature of cold wall

TfToTs fusion, initial, and surface temperature

Tfs solidus temperature

Tm lowest temperature for freeze, mushy zone -Tw wall temperature, finite slab

T, temperature of flowing fluid .

T -T
sU T -T dimensionless temperature

v pore water velocity
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V volume

Cartesian coordinate p

xi volumetric fractions of soil solids (s), liquids (t),
gases (g)

X phase-change depth

Xs  steady state phase-change depth

a thermal diffusivity

'IL2

B ~/(21/t-) thermal penetration depth parameter 'S--

y X/(2/ct) phase-change depth parameter

thermal penetration depth 0

AT (TO - Tf)

ATm Tf-Tm

ATf Tf - Tfs

AX X - X1

C length of season

x/xs

in x/XY,. t

e integrated temperature or temperature

A phase-change parameter = yv 72T 1-

i ST/ 2

ratio of unfrozen water to soil solid mass

&oEf,ts  values of g at Tf, Tm, Ts
p density S

P12 PI/P2

G VAT
ai (-2 t, dimensionless time

h1 (T1 - Tf)t
T' 

f
pit X

5

• r* 2"n t ,"_Z

P0
* (To-Tf)/(Tf-Ts ) superheat parameter

99

-U .. - ~ ~ a '~V\~~AK

%- ~ ~ ~ '' a~'~
.P .- * - A-Is'



A - -. -

(Tf-Ts)/ATm

#2 Trf/ATm

(To-Tf)/ATm

X1 /(2/ a-- ,) phase-change depth parameter

Subscripts

f frozen

g gas

i ice

I liquid

s solid

t thawed

w water or wall

1,2,3 regions of material

so steady-state

.%

'00

0 %
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CHAPTER 3. PLANE PROBLEMS WITH CONVECTION (RADIATION) AT FREE SURFACE

The thermal boundary condition at the free surface of a body can be

specified in terms of temperature or energy flow. The energy flow can fur-

ther be characterized as a specified heat flux or a heat flow dependent

upon the ambient conditions and the surface temperature itself. The most

widely encountered boundary condition for a solid is that for which energy

flows between the solid and an ambient fluid. The heat flux at the surface

can be specified as

-kT(,t) ffi h [T (t) - T(O,t)] (3.1)
ax, a

where h (see Nomenclature the end of this chapter) is the surface

conductance, which is not a thermophysical property of the ambient fluid

since it depends upon the state of the fluid motion. Surface conductance

is usually specified or obtained from suitable correlations. 0

The surface boundary condition often includes radiation effects. Con-

sider a wall, in contact with a fluid, which exchanges both radiation and a

convective heat transfer with the surroundings. The surface energy balance

can be written as S

-k = hc[T - T(O,t)] + a's'F(T - T(O,t) 4 ) (3.2) .0-ax1  c a a

where

a' = Stefan-Boltzmann constant 0

C' = emissivity

F = radiation shape factor

= surface coefficient or film conductance, for convection.

If the ambient temperature is not too different than the surface tempera- 0

ture, then eq 3.2 will reduce to eq 3.1 where

3h = h + 4a'e'F T (3.3)
c a

Therefore the nonlinear boundary condition given by eq 3.2 can be linear-

ized and combined with the usual linear, convective condition. Thus the .

boundary condition of eq 3.1 is often referred to as a "radiation boundary

condition." Radiation does not exist in purely convective problems and h

is simply hc
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When h is very large, eq 3.1 reduces to

T(Ot) Ta

which is the type of boundary condition discussed in Chapter 2.

Finally if h [Ta - T(O,t)] is a specified function of time, then

eq 3.1 reduces to that for a specified surface heat flux. This type of

boundary condition will be considered in Chapter 4.

3.1 SINGLE PHASE PROBLEMS

Problems with only a single phase (solid or liquid) that experiences

temperature changes are much simpler mathematically than two-phase situa-

tions.

3.1.1 Exact Solution for Semi-infinite Medium

Consider a semi-infinite solid, initially at the fusion temperature,

which starts to melt due to convection or a heat flux imposed on the free

surface at time zero. If we refer to Figure 3.1, the problem can be formu-

lated as -

a2 e ae
= - (3.4) T(0, 0ax aT T Lqi oi

TT,
0((:,t) =0 (3.4a) hq" T "--

ae (o,T) = - d4
ax S Te dT (3.4b)

36 
qC h[T -T(O,t)]

x = -1 (,T) (3.4c)

where
Figure 3.1. Melt of a semi-infinite

T - Tf x1 X k medium with surface convection. %
O = x - a=- d=- •
0 T -Td d

a f d d h

at c(Ta - Tf)
T dS = = Stefan number.

Note that when e = 0, a constant surface heat flux exists:

-k T(0,t) =(-k ax f (Ta - Tf) h = constant.

If £ = 1, the general convective heat transfer boundary condition applies:
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-k 3T(O,t) = h[T - T(0,t)]
ax, a

Lozano and Reemsten (1981) show that the following equation is a solution (

to eq 3.4:

= 1 a1n[x - 2n 35
(6n) " (3.5)

STe n= 1  . D n

The convective boundary condition is used to find

Tp  (3.6)= p!
p=l

p-1 1 (a)
s(P) = - " (2n+l)! IQ] S

n=1 ac- r(2n+l,n+p)

+ 2n! [a] S . (3.7)
ac F(2n,n-l+p) 0

For specific cases, eq 3.5-3-7 can be quantitatively evaluated, but the

numerical work is at best tedious.

For a constant surface heat flux (c = 0) and STe = 0.2, Lozano and *

Reemsten (1981) obtained the following expression for the first four terms

of the interface position:

= 0.2T - 0.004c 2 + 0.0002667T3 - 0.272 x 10- 4T (3.8)

The location of the interface vs time, using Table 3.1 Position of the

the first 50 terms of eq 3.6, is given in solid/liquid interface, con-
stant heat flux, exact solu-

Table 3.1. Equation 3.8 is compared to other tion, (E = 0), STe - 0.2.

constant heat flux solutions in the next chap-

ter: 
T a T

In general 
0.0 0
0.1 0.019960 263981

Gl-Se2 5 4 2 0.2 0.039842 090909

Te - 2 Te 6 Te - 0.3 0.059646 987880

0.4 0.079376 404411
17 Se6 3 827 Se8 4 0.5 0.099031 735838 ."

8 Te + Te + " 0.6 0.118614 326441 __ 9
(3.8a) 0.8 0.157566 424063 '...,.

1.0 0.196242 534396
The solution presented here is exact, 1.2 0.234651 840602

but it is perhaps best used to check approx- 1.5 0.291784 196041
1.8 0.348362 261688 '.

imate methods, due to the time-consuming 2.0 0.385783 461461
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0

T t) "Uh (t)
h

K=O. --T
ICO Sold X Figure 3.2. Freezing of

a medium with convection
and initial temperature

Liquid at fusion value.

numerical reduction necessary. We shall use the results of this section to

compare approximate solutions.

Westphal (1967) considered freezing of a semi-infinite medium with

convection, letting the ambient temperature be a function of time, as shown

in Figure 3.2. He obtained an exact solution using infinite series. The

problem can be expressed as

t= a --T (3.9)

at =ax

T(X,t) = Tf (3.10)

k ax T X ; x X (3.11)
ax dt~x

aT
k -= h[T - T (t)] x 0 (3.12)a~xa

X(O) = 0* (3.13)

A formal solution to eq 3.9, attributed to Portnov (1962), which does not

satisfy any boundary conditions is

T(xt) = 1 f exp [_y 2  x- 2Y O(Xy) dyx

0 2

+ 1 f exp [yy)] y 2 (Xy) dy (3.14)

where

2V. -at

41

The functions &1 82 X are found from eq 3.10-3 13, expanding the _

functions in infinite series
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OL M In n (3.15a)
o n

2(W)= X 2nW (3. 15b) S
0 2n

X(u) = x n  (3.15c)
1 n

U(1 = UO n  (3.15d)

Three equations are found by substituting eq 3.14 into eq 3.10-3.12:

0
/+' hU = 2k [1 8 exp(-) (0IJ ) dd + f 8 exp (-_0)2 02 (OP) d

0 -m

00+ h~T [I exp (OP)2 $1 (8) dB + f exp (-8)2 ¢2 (8) d8] (3.16)

-0-

+ f exp (_0)2 02 (Op + X) d8] (3.17)

f !- _2i exp (_0)2

+ f B exp (_8)2 02 (.u + X) d] (3.18) •

where

= -YO~ - y) ,

di~i

Substituting eq 3.15 into eq 3.16-3.18, after differentiating and letting

U + 0, leads to a set of equations for the coefficients In, 02n, Xn" .y vJ

Westphal (1967) gives a solution for the case when the ambient V'

temperature is constant and water is the medium. Table 3.2 shows the
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Table 3.2. Phase-change depth vs time, convection with constant
ambient temperature, STe - 2/35.

hTime (u k-)

h Exact Quasi-steady Heat balance integral
a = k X (Westphal 1967) (eq 3.24) (Eq 3.31)

0.003565 0.5 0.500 0.501
0.01418 1.0 1.000 1.002
0.03161 1.5 1.499 1.503
0.05562 2.0 2.000 2.004
0.08543 2.5 2.497 2.505
0.1208 3.0 2.994 3.005
0.1611 3.5 3.491 3.504
0.2056 4.0 3.984 4.004
0.2534 4.5 4.471 4.503
0.3028 5.0 4.940 5.002

interface vs time for (Tf - T) = 10°C, STe = c(Tf - T )/ = 2/35
f a

Also shown are approximate solutions which will be discussed later.

The results shown in Table 3.2 are in close agreement (less than 0.7%

difference) with the solution given by eq 3.8 for small values of time.

This is expected since the Stefan number is small and the surface heat flux

is relatively constant at early times.

The solution method is closely allied to the concept used by Tao

(1978) to solve the extended Neumann problem (see Section 2.3.1).

3.1.2 Analog Solution

There are no exact solutions for this problem when the initial temper-

ature is different than the fusion temperature and the ambient temperature

can vary. Kreith and Romie (1955) used an electrical analog to obtain a ,

solution, for the freeze case, when the initial temperature was at the fu-

sion value, which is the problem described in Section 3.1. At the surface

of the solid, the conduction will equal the convection heat transfer:

aTI
k1  = h(T - T), x = 0 . (3.19)

The analog solutions for the surface temperature and the depth of

freeze are given in Figures 3.3 and 3.4. These figures can also be used
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Figure 3.3. Surface temperature Figure 3.4. Depth of solidifica-
during solidification of a semi- tion for semi-infinite region
infinite medium with convection subjected to convection at the
boundary condition at the surface surface (from Kreith and Romie
(from Kreith and Romie 1955). 1955).

for melting if the properties of the thawed material are used and if the

latent heat is taken as negative so that I/c1 (Tf - Ta) will be posi-

tive.

The depth of freeze for this problem agrees within 10% with the

Neumann solution (To = Tf, Ts = Ta) if X h/k is greater than one.

The heat flow to the surface "sees" two thermal resistances: a conductive

resistance that increases with time as the frozen layer grows and a con- S

vective resistance that is constant. Thus, after a certain time, the

relative effect of the surface resistance is approaching zero and the

solidification proceeds essentially as in the constant surface temperature

case.

3.1.3 Quasi-Steady Approximation e

The freeze problem of interest here reduces to the following for the

zeroth quasi-steady approximation:

a 2T1  (3.20)
= 0

ax

T(X,t) = T 
(3.20a)

f

TL(x ,)  = T f (3.20b) Nk "
(3.20c)

X(0) = 0 %32c

a T i ddX.

ki - - pi1 t x = X (3.20d)
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X0
Solid (D i qT =Tuid"','

T" (t) r ot

h Figure 3.5. Freeze of a semi-
-- x infinite medium with convection

xzo and one phase.i..

k x - - hiT - T a (t)] x = 0 •(320e)

The liquid region remains at the fusion temperature, as noted in Figure

; 35. The solution to eq 3.20 and 3.20e is

k 1T = a(x + T--) + ra(t ) •t(3.21)

Then from eq 3.20a and 3.20daei

dX k (T f - T a) 0e

dt pl kI (3 22) .

(X + W

The solution to this equation which satisfies eq 3.20c is'

2 2k I  t k I  -T -- f [Tf - Ta (t)] dt + +_2Tt (3.23)

dt pl f (3.22)

Thefoutonato this equation wchatife sml ineq ratdc is aio .2If the surface coefficient h is a function of time, then the equation for

the phase change interface is to

' * .'. ,

dp~ 2k dh
-= - ( T ~T)- 2

Unfortunately, this equation cannot be simply integrated. Equation 3.23

was first reported by London and Seban (1943), assuming that Ta(t) was

constant. The equation was given in its present form by Foss and Fan

(1972) and was used for surface temperature calculations during freezing

and thawing by Lunardini (1978a, 1978b).
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If Ta is constant, then eq 3.23 is

k, 2  2k, 2
t (Tf - Ta = 2 Set + (--) (3.24)

and the surface temperature (valid also for Ta = Ta(t)) is

T f- T ak 1  '

T = Ta + fia (3.25)

where

cl(T - T )

Te I

Equation 3.20b cannot be strictly satisfied since there is no time

coordinate in the energy equation. However, eq 3.25 does give Ts(0) =

Tf and the temperature in region I is only valid for t > 0. Equations

3.24 and 3.25 agree very well with Figures 3.3 and 3.4, the analog

solutions of Kreith and Romie (1955), particularly for small Stefan numbers

as is expected. Comparison with the exact solution of Table 3.2 confirms

the accuracy of this approximation for small Stefan numbers.

3.1.4 Heat Balance Integral Approximation

Goodman (1958) has solved this problem using the integral method. The

labor involved in the integral method tends to far exceed that of the

quasi-steady approximation. The equations for the freeze problem are

pitI

d8 T dX £dX - 0ax (3.26

e f f T(x,t)dx (3.27)
0

T(X,t) = Tf (3.28)

k T(ot) = h[T(O,t) - T 1 (3.29)
ax a

2T(t)*: .
• ,.',v

k X,t)2 = pla 2  (3.30) V 00
ax ax
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The boundary conditions are used to find the coefficients of the quadratic

temperature approximation:

T = Tf + a(x-X) + b(x-X)2

= - (1 + a) + /(1 + 0)2 + (8 - 1) a(a + 2)
2hAT (8 - 1) a(a + 2)

;b = _ 4 AT a

where

h2 (T - T )t
ia f

STe = k1pik

AT T f- T

h•
fY a

a = 0! ,.

=I + 2 S TeI.

ST _ I {[(1+28) + (2+a)o][l + 80(2+0)]2 ]
12 12a

|I
!N

2 2 1+( 2+01 .

2(8-) in [i+a(2+o)12 + [(1+o)8]2 48(8-i)ln -1+8(2+o) + 2

22

+ (8 +58) + 2(8 +48-2)o - (1+2a)} • (3.31) .%

The surface temperature is given by

Tf - T(,t) -1)a + 2(8-2)a-2 + 2[1 + Oa(2+a)] 2

Tf - T = (8-I)(2+°)2  (3.32)

f a

Equations 3.31 and 3.32 are plotted as Figures 3.6 and 3.7. Comparison of

these figures with Figures 3.3 and 3.4 shows that the integral approxima-

tion is quite close to the analog solution.

The heat balance integral approximation is compared to the exact solu-

tion of Westphal (1967) in Table 3.2 The agreement for this case of low

Stefan number (STe= 2/35) is remarkable.
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?ST.~h ATt/k~p TS~eh
2
A Tt/kp

Figure 3.6. Thickness of melt Figure 3.7. Surface temperature.',.
vs time, for aerodynamic heat- vs time, for aerodynamic heating '..

ing or radiation boundary con- or radiation boundary condition .'

dition (eq 3.31). (eq 3.32).,'"

It is interesting to note that if the Stefan number is zero (A = 1),

then the integral solution for the phase-change interface and the surface

temperature are
2 2

STe'= -+o (3.33) .. _

f 0

Tf - T(0,t) _o(3.34) b.", q

AT 1.+ " S

Replacing "t and a by the usual variables, t and X, leads to *J a..

k=2 2k SAT 2
( X0+=- ) t +0.2

ST =2AT/+ AT ke 2 '"

TOt Ta kX + h x-

These are identical to eq 3 24 and 3.25 of the quasi-steady approximation-

chO and Sunderland (1981) presented an approximate method of solving

this problem for the single phase case. They assumed that the temperature iV.

profile was of the same form as for the case of the non-melting problem." '1%

Their results agree very well with eq 3.31, but they note that the zero- ---

subcooling solution should be a good approximation to the subcooling prob-

lea. This is not true, as will be shown in Section 3.2. The subcooling

has a very significant effect upon the rate of phase change and may be ig-

noted only at the risk of serious error.
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Figure 3.8. Freezing with sur-
face heat flow.

R',

3.1.5 Constant Heat Flux From Liquid Region 5%/u

A problem with significance iti terms of the freezing or melting of ice

layers over bodies of water can be formulated if the heat flux from the

material changing phase is assumed to be constant

3.1.5.1 Quasi-Steady Solution

Foss and Fan (1974) solved the problem using the quasi-steady method.

The initial temperature distribution is not known, but the initial air

temperature and the surface temperature of the water are at the freezing is

temperature (see Fig. 3.8). At t = 0 the air temperature drops below

freezing and may then vary with time. The equations are -'. ,

= = 0 (3.35) '.
ax OL at

aT1 (Ot)
kx =h [T1(O,t) - Ta(t)] (3.35a)

X a.

T1 (0,0) = T (3.35b) -
f

T (0) = Tf (3.35c) .

aS f

TI (X,t) = Tf (3.35d)

aT,(X,t) T2 (X,t) dX
k a -k 2  9 it 1L a- (3.35e)

At the solid/liquid interface the heat flux from the liquid is assumed to

be constant; therefore,
)T2 (X't)

k2 ax qw - (3.35f)
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This assumption reduces the problem to a single phase case. The solution

to eq 3.35 with boundary conditions (eq 3.35a,d) is

h TX 
a

(Tf + k, ) hx -h (Ti (I + k--)- Ta . (3.36) ,
+ hkX

ki

The differential equation for X is oucained from eq 3.35e using eq 3.36

h (T - T )
PitdX f a (337

dt I (3.37)

The integration of this equation depends upon the functional form of the 0

time variation of the ambient temperature.

3.1.5.2 Constant Ambient Temperature

For a constant ambient temperature eq 3.37 can be easily integrated.

The solution is

k lp12. h w i (Tf qw h h hkX (3.38) 'i
h q h (Tf- Ta) h ( T h

h (Tf -T)- q(l +--)

or

S T z I in [ w , (3.39)
Te qw 1 - q w*(l+) q* -

where

h ('r)f a
cl~h (Tf - Ta) ..

cI(T f T Ta)

Te =.

h X

The steady-state jalue of X can be found by letting dX/dt = 0 in eq 3.37 0

Then
T -T (3.40)Xna = k1  [ a.I (340

max qw n

STe

- - 1 (3.41)
max q*
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Figure 3.9. Phase change depth for a Figure 3.10. Phase change depth for a sin-
constant ambient temperature (eq 3.39). usoidal ambient temperature.

The transient and steady-state values of the phase-change depth are plotted A/

in Figure 3.9 for specific values of qw* and Ta.

3.1.5.3 Sinusoidal ambient temperature 0

If the ambient temperature varies with time, a numerical solution of

eq 3.37 will normally be necessary. Foss and Fan (1974) present a solution

for a particular yearly sinusoid, with daily fluctuations included, and a

particular value of qw*, as shown in Figure 3.10. N'.

,-.-N-
3.1.5.4 Convection in the Liquid Region, Perturbation Method

The growth of ice at the surface of a river or in laLnt heat storage .,,.

systems can be mathematically described by freezing of a liquid flowing S

over a cold wall or in contact with a cold ibient. The temperature and

properties of the fluid and the ambient are constant. The problem (see

Fig. 3.11) is h,
- Frozen T,

C = a 2 (3.42) T,

Flowing ... [
/// Liquid ,,.p Ik (Xt) h (T 1  (3.43)

_j 0
BT(O,t) = h [T(O,t) - T ] (3.44) P.N "

ax O a

T(X,t) - Tf (3.45).',,"

where Figure 3.11. Freeze of a fluid 0
flowing over a cold surface. %,
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a +

- a- + (3.46)
h k hh0 w

Clearly this problem is identical to that of Section 3.1.5 if qw =

h1 (TL - Tf). Seeniraj and Bose (1982) used a perturbation method to

find solutions valid for small Stefan numbers (STe < 1.0).

A steady state solution will occur when the thermal resistance of the

ambient equals the combined resistance of the solid layer and the fluid.

This is

T -T
f a 1

X s-k [h(TI -Tf) - h o] (3.47)

In nondimensional form, the equations are

a2u s au (3.48)aE2  Te 3*

dS =u(S,T*) Bi
d =* a- Bi+l (3.49)

aE(B)= u(0,t*) (3.50)

u(S,T*) = 1 (3.51)

where

T -T a  
ho Xs k (Tf - Ta)t

X X TiT i k pi X 2

s s f a s

The perturbation method uses an expansion of the rate of change of the

phase change interface (see App. A). Thus we will replace the time %

variable in eq 3.48 by S, assuming that S is a monotonic function of T. %

Then

2 S g.au( ,S) (3.52) .,*

ag Te as - '

dS
g d (3.53) 0

Now we expand the temperature u(E,S) and the speed of the phase change ""

interface g in asymptotic series with the Stefan number as the parameter.

This will be valid for STe < 1.0: 0

1.15
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u(C,S) - uo(C,S) + STe ul(C,S) + STe2 u 2(C,S) + ... (3.54)

g " go (S ) + STe g 1(S) + STe g 2(S) + ... (3.55) P

Substituting eq 3.54 and 3.55 into eq 3.49-52 yields

2u

a g i > 0 
(3.56)

1 1-0

u (S) . { (3.57)
0 1>0

)u (0)
- Bi uj(O) 

(3.58)

a uui (S) Bi

g - - l (3.59)

iu(S) i > 0
i

The phase change interface can be found by inverting eq 3.54 and

integrating term by term to obtain

T* - -o 1+ STe + T2 STe 2 + (3.60)

The relations for T i as functions of gi are given in Appendix A. S

Using this perturbation technique allows simple mathematical

techniques to yield the following solutions:

U I+B1 S (3.61)

B1j2(,_S) "-
go (I+Bi)(l+B S) (3.62)

T M- ,Bi+l ii

o k_-:-) IS+-7 B n (1-S)] (3.63)

U1 - 6(lB S) [ 2 (B +3)(l+B S)-S 2 (B S+3)(B +) (3.64)
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9 -Bt 3 (I-S)S [B2 S2+3BiS+3]

1 3(1+B )(1+B iS) 4

T -!!S(I In (I+B iS) S B1
2+3B +3n -S) (3.66)

L 3B i Bi(1+B1 ) (1+BiS) I+B i

The surface heat flux is given by

k (Tf - T ) =]Bi I STei ui(OS) • (3.67)
f aNi=

The zeroth solution (i=0) is identical to the quasi-steady solutions

of eq 3.36 and 3.38, as expected.

The results for the surface temperature agreed well with the data of 0

Savino and Siegel (1967) for Bi = 1.35 and STe = 0.232.

If the surface coefficient h is very large then the problem reduces to

that of a cold wall held at a constant surface temperature Ta. The same

solution can then be used for this case if ho _ k,./a. •

If, additionally, the wall thickness is zero, then the Biot number is

infinite and the problem reduces to that of the constant surface

temperature case discussed in Section 2.8. This is also true if the Biot

number is very large. S

The perturbation solution derived here is identical to that derived by

Huang and Shih (1975). Their method also included the use of a Landau

transformation and they noted that for Bi < 1.0, the zeroth order solu-

tion is acceptable for STe < 0.1 while the first-order solution is good

for STe < 1.0. The additional complexity of the Landau transformation V

does not seem warranted for this problem. .

3.1.6 Freezing of a Finite Slab

The freeze (or thaw) of a finite slab of material is of interest for

energy storage problems. Consider the slab - shown in Figure 3.12 -

which is initially at the freezing point and is suddenly immersed in an am-

blent fluid with a variable temperature. The mathematical description of

the problem is the same for both sides of the slab but the ambient condi-

tions can differ on each side. At x = 0, the equations are as follows,

while at x - a, the form of the equations is the same but the properties

can be different and are denoted by primes:
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3Txt 12 TS,aT(x,t) _ a .~x~t) (3.68)at 3 x2 ;
atf

k !-T0,t) = h[T(O,t) - T (t)] (3.68a)ax a

T(X,t) = f (3.68b) h T T' h

dX aT(X,t) n-
p i-t k ax (3 .68c)

X(0) =0 (3.68d)

The ambient temperature is always below freezing

but it varies sinusoidally as
Figure 3.12. Freezing of a

Ta (t) = Tm + D sin Q t . (3.68e) coolingite slab with convective

Gutman (1986) considered a perturbation solution of this problem.

Nondimensional equations can be written as

2a v a)vv= ST  (3.69)

ac = v(0,T) - 1 + p sin WTI (3.69a) N

v(o,T1 ) = 0 (3.69b) S

do -av(,T) (3 .69c)

dT1  aT

where 0

T -T s tf xh Xh T

T f-T mk kkf m

c(T -T ) .P k -0
ST = f m Tf Tm h(T - T)

m f m

The temperature and phase change interface are expanded in a power series Pk

using ST and p as small parameters: 0

V V +STv 1 + p v2 +... (3.70)

0 + ST + p + (3.71) .-
o T 1 P 2+ oS

The system of equations is
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~JJ'. J~~J~w' W%,

v 0 i 0,2

= av (3.72)

1 1

avi(0,l) S ( - = 0

ac v,(0,Tj) f (3.73)

v2 (0,TL) + sin WTL 1  2

V (a 0 aVo(OoTI) (1 0 (3.74)-

a ° -- i 1 1,2 (3.74)

d v (a Tri  vi (oT)''.
d___ (3.75)

o (0) = 0 (3.76)

Functions evaluated at a are expanded in Taylor series about a ao as

discussed in Appendix A. The solutions are

a - {

a 0 (3.77)Vo =I+ O a

a I + 2 rt  - 1 (3.77a)

V 3)2 a + 2 (a +3) (;+I)
0 6 + a 1+0 (3.78)

0 0

-2 (a +3)

a = 02 (3.78a)
1 6(1I-a )

--a 0 sin W tI (1 - cos )(+) (3.79)

V2  (1-1a W w1+Y 0)
o0

cos W T1,
a2 = (1+° (3.79a)

0

The time for the slab to solidify completely Tf can be found from

O(Tf) + V '( = B (3.80)

where

v h/h' Bo h_a
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If Tf is expanded as

tf Tfo + ST IfI + p Tf 2  (3.81)

then S
T - 1 -(14n)A2 - (1-V2)(") -ZA 2Vn+ 1 (3.82a)

fo 2 (1-n) A'

where
A- +v+1 -

A -B °0+v

Tfl T - [fl( tf ) + v n a (T /v 2 ) ] (3.82b) P
f (l-cosfo ) 0

tf2 - c (l+ao) (3.82c)

-1/2 2 -1/2 -1- [(1+Go )  + n (v +2n T fo) (3.83)

For the case of a constant ambient temperature, the solution compares very

well with the exact results in Table 3.2

The case of a slab insulated at x = a is obtained if V = = 0. (This

is also the case of a semi-infinite medium.) The solidification time is 9

B (B +2) B 2 (B +3)
0 0 00 ..P(82 6(Bo+1) ST + (l-cOsWfo)P/W (3.84)

3.2 TNO-PHASE PROBLEMS--

When the medium is initially at a different value than the fusion

temperature, the problem is considerably more complicated. There is no

exact solution for this case but Lunardini (1981, 1982) has obtained an e.1-

approximate solution.

3.2.1 Heat Balance Integral Approximation

The geometry of the problem is shown in Figure 3.13. Using the heat ..-

balance integral with collocation, the overall energy balance for the

volume of interest is
d 8TI (0,t)

"[PLCl + P2 c 2 02 + PltX + ( 2 c 2 - plcI)Tf- P2 c 2 T0 (X+6)] -k dx

(3.85)
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Ambient

TmD

Figure 3.13 Surface convection
LX I for a semi-infinite body

where

8l = f Tl(x,t)dx

0

X+6
02 M f T2(x,t)dx~X

The term (P2c2 - pic1 ) TfdX/dt is the net sensible flux of enthalpy 0

at the phase change interface due to the sudden jump in the specific heats

of the frozen and thawed volumes. The retention of the sensible enthalpy

term gives better numerical comparisons to the exact solution.

The energy balance, at the phase change interface, can be written as S

collocation equations (see App. B):

aTL(Xt) aT2 (X,t)
-k1  -a + k2 a -

a2TL(Xt) DTI(X,t)
"ia--- / x (3.86)

ax ax

aT1 (X,t) 3T2 (X,t)
-kL ax + k2  ax %

a2 T2 (X,t) 3T 2 (X,t)

-P212 / ax (3.87)

The fc1llowing temperature approximations can be used: .1
'

T= Tf + ai(x - X) + a2 (x - X)2  (3.88)

T2  f -2 f 0(x - X)+(fT (x - X 2  (3.89)
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Equation 3.88, representing the temperature in the region which has

changed phase, contains two unknown coefficients. One of these can be

found from the specified boundary condition at x - 0. Combining eq

3.86 and 3.87 yields

a2  a2i
- - - (3.90)
a, 26

The surface boundary condition is

aT1 (O,t)
-kl - hTa T1 (0,t). (3.91)

Thus
-S Te

a 1  X( c12 ,1

Using eq 3.87

2 + + a2 i( + 1)b (3.92) "

where

2k2LSTm + a21
S Te

h

X.

The energy balance equation, eq 3.85, can now be written as

dF _ 2($+a2 l a)
d- 2(0+1) + a21 (o+2) (393)

F Ta 32+ 1 1 V..

STe 0' * + '' ) + () _-6(3.94) .l

2f (0+1) + a2, a(o+2) + O(l+c2LSTM" +3 c2LSTm (3.94)

Equation 3.93 can be written as S

2T f Q do' (3.95)
0

and
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PQ - (2f + a2 1 o) a STe + (1 + C21STm)g

+ 2 [a(1 + C21STM) +- C21STmf](P + a21 )

Te + - C21STMg

+2 [o(1 + C2 1 S ) +i- C2 1 S (a+1)
TM 3 1 TM

-. 4.

b(P + a21 )-2 (a + 1)F 2* - b(a + 1) - 2(P + a20F

where P = * + a2 1a and g = 2[P(I - a) - afJ.

It can be shown that when STm = 0 and STe = 0, eq 3.93 can be

solved to yield the quasi-steady solution, eq 3.24.

The numerical solution to eq 3.95, when STm = 0, is identical to the S

heat balance integral solution of Section 3.1.4. The surface temperature

is

T1 (0,t) - Tf a(2 + a2 1a)

Ta - T f a(20 + a21a) + 2( + a21a) (3.96)

The nondimensional surface heat transfer rate is ,..- ..

(+ a2,).

q* = 1 • (3.97)
04€ +- a2 10) + (4 + a21a)

Equation 3.95 was solved by numerical quadrature (Lunardini 1983).

Figures 3.14-23 are plots of the solution for some values of Stefan number

and STm, with property ratios given as functions of the volumetric water

content for soils systems. As has been noted, the heat balance integral
.. .. $-

method yields solutions that compare quite well with the few exact

solutions. Thus the graphs presented here should be accurate for normal

engineering design, especially since the soil thermal properties will

normally be known only to within 10-20%. Figures 3.24-33 give the phase ,'.

change depth vs time for some possible phase change materials with the

properties listed in Table 3.3.
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Table a.3. Thermal properties of some phase change materials.*

Specific Thermal
Latent heat at conductivity

Fusion heat of Tf at Tf Density
Phase change temperature fusion (Btu/ibm OF) (Btu/hr-°F-ft) at 25Cmaterial (OF) (Btu/ibm) Solid Liquid Solid Liquid (ibm/ft 3) %

B20 3  842 142 0.41 0.44 0.9 0.58 115.5

33 LiF-67 KF 918 266 0.32 0.39 2.4-4.8 2.30 157.9

67 NaF-33 MgF 2  1530 265 0.34 0.33 2.4-4.8 2.69 133.6

12 NaF-59 KF-29 LIF 849 257 0.32 0.38 2.4-4.8 2.60 157.9

*Energy Research and Development Agency (1976).
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Figure 3.16. Surface convection for Figure 3.17. Surface convection for

soil, xt = 0.50, STe 0.5. soil, xt - 0.75, STe = 0.5

20 , I 1 2 20 ,

-I0

1 ST..-I /' 0. ST.*01 / 4/

iz I / / - / ;I / / /.,,/- / /

2ij/ //

II //

12- 12l-i%

i h/ I, / /

kI

soi , y I S l S eil
ST. /-.

11/.. ,;,/

III!,,, S. .2.0 Th,

Frezin Freeze orTa

0 0 4 6 0020 40 60 e0

T, a,(t0) 
( o

Figure 3.18. Surface convection for Figure 3.19. Surface convection for
soil, xt - 1.0, STe -0.5 soil, xt - 0, STe -2.
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Figure 3.26. Surface convection, Figure 3.27. Surface convection, ""

33LiF - 67KF, STe 0.05. 33LiF - 67KF, STe 0.1.
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Figure 3.28. Surface convection, Figure 3.29. Surface convection,
33LiF - 67KF, STe = 0.15. 33LiF - 67gF, STe f 0.20.

a-'.' ;,

2 1 .5 21 . 5 . ' .

16 S/' " 16 - S i m..0 ,.% !'% .'

V / / iI/ /p ,,-.l
11I/I" III

2 /. /12 II
//2/ ,I ".4%
/ h..XI /h"

J x / i -x I l

8 / 7e P *P/
/ / /I ,.. ~tT
/ / "6F-3MF I ',

/ .- Freeo Tha i ,
/C . 21 1.03 0.97 - 4 67a//3 gF

,7 k2 1 1.34 0.75 I~ 5 
7 o 3 M 2 '

5
l/ / - a2, 1.30 0.77 S.".

S-- Freezing ----Freezing

0 0 40 60 80 0 20 40 60 80

h t * Ito ) k-

IFigure 3.30. Surface convection, Figure 3.31. Surface convection, I67NaF - 33MgF 2 , STe - 0.05. 67NaF - 33MgF 2 , STe - 1.5.
•.. .,"

128 ', ,.
a= .. *

... •. "a....-



20 20 -

"10. "I"G-'%
I/ 1 5

I .01. 0. 0
I/ / / 1,

12 / / / //12,ii
h- X/ .1 ,

-hx / .
k1  jI / / @,

I / / I
8e / 8

I / / / II/
/ 12NaF-59KF-29LiF

I / ," // S -0. 0 5  i
I / / / Freze Thaw ' /

4 J C2 1 0.84 1.19 4
4 k2 1  1.38 0.72 / 12NoF-59KF-29LiF

,2 1.65 061 S. -1.5 '
// -- h in ,

"

-- -- Freezing --- Freezing -

Thawing Thawing

20 40 60 o 020 40 60 80

1 to,0  'S T. g 1 lto)

Figure 3.32. Surface convection, Figure 3.33. Surface convection,
12NaF 59KF-29LiF, STe = 0.05. 12NaF - 59KF - 29LiF, STe 1.5.

3.2.2 Insulated semi-infinite region %
S

Figures 3.14-33 can also be used for the case of a slab insulated with .

a layer of material when the insulation temperature is T., as shown in

Figure 3.34. The conductive resistance of the insulation must equal the . N.

convective resistance of the air layer. Then

d 1 (3.98)

The dimensionless phase change depth is then given by

ki X (3.99) ,.. p

c dki c

Insulation Thawed Frozen
k i  k I k2 ' 

'

,. 4 .

d x Figure 3.34. Semi-

infinite body with •
insulation layer.
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The graphs can then be used by assuming that the insulation layer has no

latent heat and phase change starts at t = to when the temperature of the

insulation/slab interface reaches Tf.

The single-phase solution, with STe = 0, can be rewritten as •

/kd2 2 2kL(T - Tf)(t - to)
Xc - kii + - kiid. (3.1 00)

NOMENCLATURE - CHAPTER 3

a wall or plate thickness

A Bo +V + 1

Bi hoXs/k, Biot number

BO  h a/k

c specific heat

C Pc - volumetric specific heat

d k /h

D amplitude of ambient temperature above Tm-

F radiation shape factor

g dS/dT

h surface coefficient of heat transfer

h surface coefficient of convection
c

h o  defined by eq 3.46

k thermal conductivity S

kij ki/k

kw  thermal conductivity of wall

X latent heat of fusion

q surface heat transfer rate per unit area

q* q/h(Tf - Ta)

q w constant heat flux rate from liquid
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S X/X s nondimensional phase change depth

ST c(Tf - T)
ST I

cl cl

STe - (T - Tf), thaw or (Tf -Ta) freeze

STm T -T

CL~
STa - (T - TO ) 0

t time

to time when phase change starts

T temperature

T a,Tf,T ambient, phase change, initial temperatures

Tm mean ambient temperature

u (T - Ta)/(Tf - Ta)

v (Tf - T)/(Tf - Tm)

x Cartesian coordinate

X phase change depth *..

X phase change depth for insulated body

X8 steady state phase change depth 0

y dummy variable

a thermal diffusivity

a12 at/a2

B + 2 STe

6 thermal disturbance

AT Tf -Ta
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£ surface heat flux parameter

CI emissivity

xh 0
kV

T -T
fi m
T f-T

o (T -Tf)/(Ta - Tf) dimensionless temperature

o integrated temperature

p 2/cit time parameter

v h/h'

xX5

P density

a hX/k, dimensionless phase change depth

a kilXc/d dimensionless phase change depth
c0

a' Stefan-Boltzmann constant

T al(t - to)1d2  dimensionless time

aisT h2 t
Tj
k?

.~ k(Tf T T)t

PI X z

* h 6/k, dimensionless thermal disturbance

w pt k Q/h2(Tf - Tm)] J-

9 frequency of ambient temperature

Subs c ris

1,2 different phases of medium

i insulation
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CHAPTER 4. PLANE PROBLEMS WITH SPECIFIED SURFACE HEAT FLUX

Boundary conditions at the free surface, in terms of heat flow, can be

specified as convective heat flow (Chap. 3) or as a prescribed heat flux.

This chapter covers some important cases for prescribed heat flux.

4.1 EXACT SOLUTION FOR THE SEMI-INFINITE REGION

Tao (1979) has found an exact solution to the freeze problem shown in

Figure 4.1. A liquid, initially at an arbitrary temperature distribution

V(x), has a heat flux Q(t) imposed upon its free surface. Solidification

starts when the surface temperature of the liquid reaches the melting point

such that Q(t) > 0 and V(O) = Tf.

The basic equations (see Nomenclature at end of chapter) are
a 2 T1  aT 1  0

= 0 < x < X(t) (4.1)
ax- at.- -

2a T2  aT 2
a2 = = - x > X(t) (4.2)

ax at

aT 1 (O,t)

k ax = Q(t) (4.3)

T2 (x,O) = V(x) (4.4)

TI(X,t) = T2 (X,t) = Tf (4.5)

F - -.

Solid Liquid .

Figure 4.1. Melt of a semi-
infinite medium with surface

.0 heat flux.
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8T (Xt) aT2 (X't) dX
k ax k2  ax = P  (4.6)

The hcat flux and initial te::perature can be represented as

k 
nQ(t) q 0 n tn/n! (4.7)

V(x) =Tf + . (4.8)
1 Va2

A formal solution to the problem is

1 n(4t~n/2 '-:

T = q(4t)"2 Gn(n) + a(4t) E (01 ) (4.9)
L ~ 4)~ G2n(l) nnn

n =0 n =0n

T2 = Tf + v 4t) n / 2 Gn(12) + b (4t) n / 2 inerfc(n2) (4.10)f n=1 n=0 n

where b.. .

= x
ni -axi

n+2

X(t) n +1 (t) (4.11)

The error integral functions G, E, and inerfc are discussed in

Appendix D. Formulas for the coefficients an, bn, An are given by

Tao (1979). The solution method is obviously the same as the solution

given in Section 2.3.1, and the numerical work to evaluate an, bn, An

is just as laborious.

Tao (1979) gives a numerical example for the special case when V(x) 0

Tf (thus only one phase is present) and the heat flux is a constant,

Qo" The first four terms of the phase change interface, given by eq

4.11, can be written as

I2 5 + 3 17 L + T (4.12) 0
2 6 8

where

NQ X 2
T 2 Q t 2
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Evans et al. (1950) also presented an exact solution for this problem by

assuming Taylor series expansions for X(t) about t = 0. The solution is a

series
1 2 5 3 17 4 + 827 5 (4.13)

T T + - T- T T .' (4k3 , d
1 6 8120NY

The equations are only valid for values of T < 0.4, unless many more terms

are included. This will not limit the use of eq 4.13 too significantly if

the latent heat is large relative to the heat flux, i.e. STe - (Qoc/h£) -.

< <.

The exact solution of Lozano and Reemsten (1981), eq 3.8a, has pre-

cisely the same form as eq 4.13. All three solutions are exact, although

they all appear distinctly different, and they reduce to the identical ser-

ies for the phase change interface. Since it has been shown that the exact

solution to this problem is unique, the above result has to follow.

4.2 APPROXIMATE SOLUTIONS, SINGLE PHASE, SEMI-INFINITE REGION ,

4.2.1 Analog Solution

Kreith and Romie (1955) present an analog solution for this case with

the initial temperature at the fusion temperature. The problem is the same

as Section 3.1.2 except that the surface boundary condition is

3T 1  'd

G = Q/kl constant • (4.14)

The solutions, in graphical form, are given for the freeze depth and the -

surface temperature.

4.2.2 Heat Balance Integral Method

The single-phase problem is formulated as
a T 1 3 @Tl"

ax2  ff at(4.15)

T(X,t) Tf (416) .'

T l (x,O) = Tf (4.17)
fN %

X(O) f 0 (4.18)
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k 3 (Xt) Pit dX (4.19)

(Ot) •
x G(t) - Q(t)/kL . (4.20)

A heat-balance integral solution for the problem has been obtained by

Goodman (1958). The heat balance integral is

d atotP-1
d[ - (Tf + --- )X -at1G (4.21)

where
x

81 f TL(x,t)dx •
0

Equation 4.21 can be integrated immediately to give

el(x) -e(0) - TfX - o X W -al f G(t) dt (4.22)
Cl 0

The temperature is assumed to be quadratic and with the boundary conditions

is
-a -ax-) a G 2T f T + a(x-X) + -2X (x - X) (4.23) ...

where a is given by

/, ~~Gct X..%,a- + + 4 . (4.24)

The solutions for X and T1 (0,t) are

T (5 + E + (I + 4) (4.25)

4c, "_____
X (Tf - T(0,t)) = 2 - I + Vi + 4C (4.26)

where

t A
a2(11;7 0 PQt

These solutions are plotted on Figures 4.2 and 4.3. When the heat flux is

constant, the results agree very well with the analog solution of Kreith

and Romie (1955), and also with the exact solution of Evans et al. (1950)

for small values of time. Solutions of this type are not valid for a
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Figure 4.2. Thickness of melt vs time, Figure 4.3. Temperature-time

for a given heat flux at boundary, eq history on bondary for a

4.25. given heat flux, eq 4.26.

pulse-type function for G which vanishes after some finite time. Two-

parameter integral heat balance solutions can be used in these cases (see

Goodman 1958).

The quasi-steady solution to this problem is extremely simple but

valid only for short times:

= (4.27)

Gutman (1986) used a perturbation method to obtain the following

solution (with corrections made to his paper) for a constant heat flux:

2  53
1. T + I (4.27a)

[Tf T( ,T)] = T - C + 1 C2 -T 2 - T2) . (4.27b) 2_22.

The solution clearly corresponds to the first three terms of eq 4.13.

Cho and Sunderland (1981) present an approximate heat flux solution

using an analogy to the nonfreezing solution. The results agree with eq

4.25, but the generality of the method is not shown.

4.3 TWO-PHASE PROBLEM

The two-phase problem has been solved by Lunardini (1982) using the

heat balance integral, with collocation. The geometry for a melt problem

is shown in Figure 4.4. The overall energy balance for the volume of

interest is

dt
dt [Pcl81 + P2 c2 2 + PLItX + (P2 c 2 -PLC) TfX -pcT( ) v

aT1 (O,t)
-k _(0,t) (4.28)L k dx . ,
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Figure 4.4. Specified surface heat flux for a
semi-infinite medium.

where

86= f T,(x,t)dx
0 1:,/,.e

X+..

02= f T2 (x,t)dx

For semi-infinite solids the following temperature approximations can be

used: 0

T= Tf + al(x - X) + a2(x -X)
2  (4.29)

T - (Tf T ) (Tf - T) (x - X)2  (4.30)

T 2 = -2(x -X) + 62]

f 6 6

The surface temperature will increase from To to the fusion value Tf sWp

when melting begins (see Fig. 4.4) and the phase change solution can then

be obtained. •

The surface boundary condition is

9TI (O,t)
-k ax = Q(t) (4.31)

and
a2  X 

..e.
I
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Q a 2  
.. .- .

a2 = 2k, (S + a2 IX)

The collocation method allows a simple relation to be derived between 6 and

X, which is

A + + a2 1 B (4.32)

where

B = 2k2 L ST + a21.

A _- -- -

Equation 4.28 can now be solved for the phase change depth . The result

is

61  3 + ~[+ a2 1 (1 + c2 L ST) ] + [ + c2  ST) A + k2  T

1

+3 c2 L ST A(A - B) = T (A + a21 C). (4.33)

For the single phase case, when ST = 0, eq 4.33 reduces to eq 4.25, as

expected.

The surface temperature (for t > to) is given by

T1(0,t) - T 0 2 1 E2 + 2, A

Tf - T 2(A + c'21  ) ST (4.34)

4.4 ABLATION WITH COMPLETE REMOVAL OF MELT

Phase change problems for which the melting (or vaporizing) material

is removed from the system might be useful for ice melting from vertical

surfaces where the water can run off the surface due to gravity.

4.4.1 Constant Surface Heat Flux.

For this problem, there are two time domains to consider: the time

before the surface temperature reaches Lhe fusion value, during which no

phase change occurs, and the phase change with removal of melt during which

the surface temperature remains at Tf. These are shown in Figure 4.5.

4.4.1.1 Pre-Melt Solution (see App. B and C)

Initially, the solid is at To, and a heat flux Q is applied at t -

0. The thermal penetration depth is 6(t); when the surface temperature is

Tf, 6 - 6m and melting begins. This problem has been solved exactly

(Carslaw and Jaeger 1959), but the integral method approximation will be •
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Figure 4.5. Complete removal of melt from surface.

used since this method is used for the melting problem. The problem can be

formulated as
2a T I I aT (435)

T(x,0) = T (4 .35a)
0

k aT(,t) -Q . (4.35b)ax

At the thermal penetration depth the temperature is To and the heat flux

is zero, then

T(6,t) = 0 (4.35c) S

T(6,t). 0 . (4.35d)

The heat balance integral is given by

+ a T(Ot) -Td = 0 (4.36)

dt ax o dt

with

e T dx. (4.37)

0

The temperature is assumed to have a quadratic profile and, with eq 4.35 Aor

a,b,c,

T = T + --Q- (x - 6)2 (4.38)0 2 Ak
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From eq 4.36 and 4.37, the equation for A is

d62  .. ".:

with the solution 0

6 = V6-t (4.39)

The surface temperature is

T(O,t) = T + Q6
0 A-

The values of 6 and t, when the surface temperature reaches the melt value,

are given by

2k(Tf - T)
6m f Q 0 (4.40) 0

k2 (T - T )2

t 2 f 0(4.41)

m 3 aQ2 "4"1

The exact value for time tm is

k2(Tf  T )2 
'

k 2 T'T..
t2
m 4",

If a quartic temperature profile is used, the additional smoothness

relations at 6 can be used:

a2 a(,) 3 T(6,t)
a2T(6,t) -3T(-'t) 0 (4.42)

axz  ax

Then 5'

Q0T T (x - .. % ,
o 4k6N

4k(T - T )
6 Mm Q ]

2 2
k2 (T - T ) .. --.

f o
T = 0.800 o -
m a

4.4.1.2 Melt Solution

Once the surface temperature reaches Tf, at t = tm, melting begins -V %

and the problem is

2
a~ T 1aT

72T = -T (4.43)

T(X,t) Tf (4 .4 3a)
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T(6,t) - T (4.43b)
0

bT(6,t)-oa 0 (4.4 3c)ax

Q 3T(X,t) dX (4.43d)

Q+k xt

6(0) - m (4.43e)

X(O) - 0 . (4.43f)

The heat balance integral equation is now 5.

de2  d6 dX ap dX aq(

d- - To rt + T f t k dt k (4.44)

with
6

62 T(x,t)dx (4.45)
X 0

**- ,b

The quadratic temperature assumption satisfying eq 4.43 a,bc, yields
T T 2 (Tf  T T )  (Tf T T ) "€'

T=T -2 f o- (x -X) + 0(x -X) 2  (4.46)

f (6- X) ( -X) 2

Equations 4.44-46 yield

i do ST+' d) (4.47)
jT T dT

Equations 4.43d and 4.46 lead to a second differential equation:

I do =i~ _ 2 (4.48)S T dT "-

where T

pkI(Tf - T)

do*

Eliminating n- from eq 4.47 and 4.48 gives '5'2 142
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6 ( + ST)
3 S

The solution to this equation is

2(1 + ST)
T - . {*-2 + S ln[S (1 -2 +111 (4.49)

-T T
From eq 4.49

4 d# ®r.
dT 312(1 + I/ST ) - *]ST T .

and then

2 d* ..
do - (14-) 3[2(1 + IST) -4]

The solution to this equation is

1 2 S
a - -- [4 -2 + Tn (S(I ) + 1)] (4.50)

T T 2

Equations 4.49 and 4.50 are the parametric equations for a as a function of

T. Goodman (1958) plotted these equations for some values of ST, as -

shown on Figure 4.6. Landau (1950) solved this problem numerically and the

results agree quite well with eq 4.49 and 4.50, but as ST become large

the values tend to diverge for small times. This can be seen on Figure

4.7. A steady-state solution for a can be easily found. If da/dT -

STOU then, from eq 4.47, 4 - constant and

1+ST ST .0

For large values of time I5.65%0_- ILa "%"X t
S ..

T 0.01
a OT

This equation is identical to the exact 0.00
0.01 0.1 1.0 10 o

solution of Landau (1950). , t2-

4.4.2 Variable Surface Heat Flux

Figure 4.6. Melt-line location
The procedure detailed in the previous vs time, with complete removal .

section can be used for the case of variable of melt, eq 4.50 (adapted fromGoodman 1958). 
-it
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ST= 0.22
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0.01 : //6 ,-

/ -- ~Exact Landau ,,
/ Goodman

Z Z 6 Altman_

0.1 1.0

/ / ~ d

0.1 II, ,/

stant surface heat flux.

surface heat flux. Following Altman (1961) a fourth-order polynomial for

the temperature will be used, with eq 4.42. Then %

T -- T + K(X 4

T(O,t) = T + Q 6 "0 4kf•

The equation for 6 and the tme when the surface temperature is Tf are

tetmeauewlbeuewth q 4.2 Then)'>%

6(t) =/20a f Q dt] 2

0

4k(T f - T0)
-(4.52)m Q(t )

m

t
m 4k2(T - To)

SQ dt = (4.53)0 5a Q(t)
0 m

Equations 4.52 and 4.53 can be used to evaluate 6m and tm if the

transient function q(t) is specified.
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The temperature profile after melting begins is

f = 4( - + 6 X( - 2 _ -(x--) + , -x XL4 (4.54)

T f -T 0 - (6 X)2 4  X)3 X

Using eq 4.43d, 4.44, 4.45, and 4.54 again leads to two differential

equations:

1 + ST)d 5aQd_ (6 - X) + 5( ST x dt 4.5

dt ST k(Tf - T) (455)

k((f T

dX I 4 k(Tf - T)
-T T IQ  - X (4.56)

Using eq 4.55 in 4.56 produces an equation in (6 -X)

d 2 0k(Tf - TO) 1'i_) 1 -5Q(t)d(6 - X) - (1 + - =(4.57)
t PX £ ST  (6 X) P1

The initial value is again 6(0) - X(0) = Sm"

This equation can be solved numerically, given Q(t),
t 4k(Tf To):''

X 1 r [Q(t) - k( (4.58)o0 '.0 ( - X) ] dt "'

For q(t) constant, the solution is

TS 4n (I + ST(1- (4.59)

T T
0

a = 5 [ _ 4 + S n (1 + ST(0- )) . (4.60)

As often occurs in integral solutions, this fourth-power approximation is

not superior to Goodman's (1958) second-power solution except that tm is

much closer to the exact value.

4.4.3 Ablation of a Slab with Finite Thickness

An approximate solution method has been given by Citron (1960), for

ablation of a slab with finite thickness. The slab is originally at To

and is insulated at x = D, while a constant heat flux Qo impinges on the

free surface as shown in Figure 4.8. Melting begins when the free surface /%

temperature reaches the fusion value Tf and continues until the entire
0

slab has melted.
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Figure 4.8. Ablation of slab with finite thickness.

The temperature of the slab before melt is reported by Carslaw and

Jaeger (1959) as 2

Q~x D+ 2 Dr t
(x,t) - 0 (a[ +3x _6xD +2D2- 2~ e D2 Cos nlx .(4.61a)
Sk D 6D in=1 D

The quasi-steady form of this equation will be used: 0

Q D 2 - D 2

(xt) =0[ at 3 x -] 6*D+ (4.61b)i k 6 0D0
The time for the surface temperature to reach Tf is

=t w (f-)~ (4.62)
D Q D 3

0

The temperature distribution at tm s*;.-
Q I at 2 2

T 0x~ ) m ~* + 3 x - 6 xD + 2 (4.63
i 'm) k DF 6 D2  .,'

The mathematical description of the melt problem, t > tmii is as follows:

a2T - 3 (4.64)0
3x a at 

N l
T(X,t) - Tf (4.64a)

aT (D,t) 0(4.64b)
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T(x,t ) + Ti (xt ) (4.64c)

X(t ) i 0 (4.64d)
m

aT('t) dK

Q + k T=Xt, t -= (4 .64e)
0 ax P dt

An approximate solution method is facilitated by immobilizing the phase

change interface using a Landau Transformation. The following variables

can be used:

X - X

D

a(t - t)
T - -
1 DT2

c(T - T )

T t

k(T - To )
r= Q D 0

D

A new temperature variable is defined as
DTi (1-S , m  ...

T - T + T (zt - z (zI (4.65)"

The nondimensional equations are

a2 __z _ _ 11)__
- + a!, f _ _ (4.66)

3ZT 3z S aT1  S S

*(O,Tl) 0 (4 .66a)

3 *(1 - S,TL)
z (4.66b)

3T (1- S,tm) S
lim { m *(zTj)} ffi 0 (4 .66c)

at0

S(O) - 0 (4.66d) .,

(0 " 1) r S (4.66e)

az = ST S 147
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The solution follows iteratively by finding a first-order solution with the

the assumption that the term a*/3T, will be zero in the energy equation.

Successive approximations can then be calculated by using the i-th order

ai/aT correction in each solution.

The first order solution is

i1 (z,TI) f A + z + CLe IZ + C2 eX2z (4.67)

1,2

,A p1+

C2 = j -

C2 = -pA 0

P = 2/ .L e(A2 t)(1 - S)

The equation for the phase change interface is .,-

A2A(l - i2 p)
2S} . (4.68) e 'P

The phase change interface equation can be solved easily by numerical

techniques.

A starting solution must be used at TL = 0 since the equation is

singular there. The phase change interface near T= 0 is approximately

= . (4.69)r

The starting solution is V,

3 %
S 2Tr -11

s T (T ) 2 (4.70)

Citron (1960) showed that the first-order solution, for the complete

melt time, is about 9% high for ST/r = 5.52 and is essentially exact for

ST/r - 56.4. Citron (1962) also solved the same problem using an <.-

expansion of the variables about the phase change interface.
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X
Figure 4.9. Freeze of a

-x flowing fluid.

4.5 FREEZING OF A FLOWING FLUID

The freezing of a flowing fluid with constant temperature and 0

convective coefficient is shown in Figure 4.9. A constant heat flux is
extracted from the surface to induce freezing. This problem has no steady- I
state solution, but a constant heat flux during cooling is difficult to

maintain in any case. The equations are 0

2
aT a T (4.71)
at a

-- dX 3T(X t) - h (T f)pt !LX - k h T T(4.71a)

k aT(Ot) =Q (4.71b)
a x

T(X,t) = T . (4.71c) 0

A perturbation solution will be used, as outlined in Appendix A.

Nondimensional equations are

a =U S au (4.72)
ac Te 3T*

aUO'* C 1 (4.72b)•

U(E ,'*) - 0 • (4.72c)

Equation 4.72 can be written with the time variable T* replaced by c: Ii
a 2 U a}U(c,c)

- g S 3( (4.72d) 0
3 ~ Te ac
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-d' (4.73)
g d

where

hh xh

Uh( (T T)

Qoht Qoc h(T -Tf
PI k Te hk Qo 1

The temperature and the rate of change of the phase change depth are

expanded as

N
U I S STel U 1(4.74)

i=0 S

g- STe gi (4.75)
i=0

Also 0

N
T* T Se (4.76)

i=0 T

where the relations between Ti and gi are given in Appendix A.

Substituting into eq 4.72a-d leads to the following systems of

asymptotic equations:

1=0
a2 U a

1 01 (4.77)
j-ii o e

= a (4.78) 0i aUi(C,C)

av (0,g ) 40.7) ,.

- o >0 o(4.79)

U (C,C) =0 . (4.80)

The solutions are

U - (4 .81a) 0
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go Y (4.81b)

U, Y ( 2 2 p'

2 Y 2 2 (4 .82a)

g= -Y (4.82b)

U2 = Y (Y+1 )E: 2_E2
2 [ ] (4 .83a)

92 = Y(Y+1)e 2  (4.83b)

__2__ +) 2 7 3 1 2 2 12 24U3 = 24 - y(. + + -) - + (17y+41+-12) 4 ( 4 .84a)
Y 2 y 24

= 3 (4y + 10 + Y (4.84b)

g2 4T,=1 [Y3+2 S
432S33

T*2=[+-- S - S + - (y2 + y 3 )S ] . (4.85)
y 2 Te 3 Te 3 4 Te 0

Seeniraj and Bose (1982) presented this solution and showed that the

values compared very well with a numerical solution of Goodling and Khader

(1975) for STe 2.6 and a = 0.6. The result also agrees well with eq

4.13 and 4.25 for values of T < 0.4.

NOMENCLATURE - CHAPTER 4

B 2 k21 ST + a

c specific heat

D thickness of slab

g dE/dt

G Q/k1  S

h surface coefficient of convection

k thermal conductivity 1

X latent heat of solidification

L pI volumetric latent heat

Q heat flux imposed at surface

Q constant surface heat flux
0
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k (T f - T o 0 
%.,,.,

r Qo0 D

X x

S Te Qocl/(hi) modified Stefan number

S T  cl (T f - To)/£ Stefan number

t t ime

t m time for Ts to reach fusion temperature

T temperature

TfToT s9 fusion, initial, surface temperature

T i  temperature distribution at beginning of melt

U (r-Tf) h/Qo  
...

V(x) initial temperature distribution 
.

x Cartesian coordinate 
""":

X phase-change depth 
-

z x X Landau transformation%-e
zD 

_ .,

a thermal diffusivity 
0

h(T w-T f  
Woe

~Qo

thermal penetration depth 
..

value of 6 when Ts reaches fusion temperature,"-,

A Q6/ (pal i)

E Xh/k, dimensionless phase-change depth

,xh/k

x/(2/a 1 0

.- .. . ... . ... . ... :, .. . .



In Ttegrated temperature .

XQ/(Pa1 2..) dimensionless phase-change depth

P density

oY XQ/[k1 (Tf - TOM]

Crw steady-state value of phase-change depth

t J

T 2 f Q(t) dt
p cz1Z2

cz(t - t)

Q 0h t
PXk

Q(6-X)/[ki(Tf -TO)]

[T +T (Z,t )-T(x,t)]/ i m dimensionless temperature

Subscripts ~

1,2 different phases of medium
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CHAPTER 5. THAW BENEATH INSILA'f'I) STRIuCi'[jRES: I )UAS[--STLEADY SOLUTIONS

The effect of heated structures on the underlying medium involves the

study of conduction heat transfer in media that cnn undergo freezing and

thawing. This aspect of heat transfcr is import a,, for the melting of

permanently frozen ground (permafros ) or the freozlnog of thawed soils

which can lead to frost heave cooap icatiots. lachenbruch (1957a, b, 1959)

and Jumikis (1978) applied linear conduction Lheorv to the effects of heat- V'-

ing on permafrost. Linear theory w-, p,---ble since no phase change was

considered despite the direct reference to permafrost problems. However,

if phase change is introduced, the conduction problem becomes nonlinear and

only a few exact solutions exist (for the simplest geomerries and boundary

conditions) as has been noted in Chapters 2-4 and Lunardini (1981a).

Geometries of practical interest do not all(,o exact solutions of the 0

thermal problem to be found. Thus closed-form solutions, as opposed to

numerical evaluations, have relied on approximate mkethod,!s.

The quasi-steady method is not as ri orois as the heat balance inte-

gral method, but it can be app Ii ed o a wide var i tv of ge()r tries (see

App. A-C). Applications have inc[ided uninsliuated nurfled pipes (Hwang

1977, Thornton 1976, Porkhaev 1963), insilated buried pipes (lunardini

1981b, Seshadri and Krishnayva 1-8()), and thr,.e-P ,i 'sIna structures

(Porkhaev 1970). Widely used cActl ited cesults as e those of Porkhaev 0

(1970). Lunardini (1982, 1983) d,ri,,,od now,, ' , -stealy relations for

insulated geometries inc id fpl Qi -iT It n i (roads, sewers),

rectangular buildings, circula I torage iii:l, ,, buried pipes. The

quantitative results for insul ted i,-t..i ,or- ,,,ror in accuracy to S

those of Porkhaev (19/0). Griphi ro tj Iq " nn-: f or prac-tical geometries

will be given in this chapter. A

The quasi-steady approximat Inn ai: smes that tih temperature field 14*

varies successively from one stea Lv "tIt ) another. Let us examine the 0

limitations of this approximation. Con, sider ;n iiufinite strip as shown in

Figure 5.1. Initially the te4erot' re of the eel -iofinite space is

uniform at To and the i nsu it -d .- r aico -4 the -4t rci i l jumps to Tp at

time zero. The temperatuzre be nth the tri p th n starts to vary with
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To -a ,~~T Insulain dT -',

,: X0 izo/Z
de .

I

z .

Figure 5.1. Insulated semi-infinite strip. .

time. The properties of the material differ for regions below and above

the fusion temperature Tf.

The equations (see Nomenclature at end of chapter) for the conduction

heat flow problem are

a2 T, a2 Tl I 3T I

x2  +z 2  t(5.1)

Tl (x,O,t) = T; -a < x < a ; t > 0 (5.1a)

T1(xo , Zo, t) = Tf (5.1b) -

a2T2  a2 T 2  Z aT 2

x2  + -2 = (5.2)x K2 2 at _P %

T2 (x, 0, t) = T x < -a or x > +a (5.2a) 4%
0

T2 (x,z,O) = T (5.2b)

T2 (xo, Z0, t) = TI (5.2c)

lim T2 (x, z, t) + T 0 (5.2d)
X, z+00, , 'I

If thawing is considered, the energy balance over the surface S separating

the frozen and thawed zones is

DT I 3T2  S
f x ,z ds =-L - (5.3)
S 00 .pN
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where %

L = volumetric latent heat of fusion fl.

m = outward normal to the interface

V = volume of the material changing phase. '

Equations 5.1-3 can be nondimensionalized using the following quantities:

C x z m s -s V 3
a a a a 2 a

T TT T T0  T-T -1 - f _ T 2  0 Tof 0 TS10

a T -T T -T
T Tf f f f

= C (T 
- T

T L

T I Tf 
':-

0o o

7r a
T -T

o =0 f
0T Tf

p f

22 ;22 2ST  €

+ =. S (5.4),'...

nr T aT

S( 0, 0, T) < - C r < +i (5.4a)

*2 ;, -, T) = 0 (5.4b) -

2 2
___ -(5.5)

'62 C, 0, T) =0 ~ <-1 or C> +1 (5.5a)

(62 0) ,0 (55b)

2 1 (5-.5c)

lin *(~ 'T) 0 (5.5d)

P Tf 30L 422 V
(~~I a---- ds' =-I41(5.6)

S, p f ama ' dT
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Equations 5.4-6 cannot be solved exactly but the diffusion equations,

eq 5.4 and 5.5, reduce to the steady-state case if the Stefan number ST,

is small. In this case it is not necessary to solve the transient conduc-

tion equation but only the much simpler steady-state conduction equation,

the Laplace equation. For simplicity, assume that the properties of the

frozen and thawed media are identical. Then the quasi-steady system to be %

solved is

2 32+ _ 0 (5.7)
0•

1 I < C < I''': , l
0 ) (5.-( ~ 17a)

0 C > 1 or ( -1

lir m ( , ) = 0 . (5.7b)

Notice that the initial condition cannot be satisfied and that the energy

boundary equation is solved by merely substituting in the solution for *.

It has been shown (Lunardini 1981a) that eq 5.7-5.7b is the zeroth system ..

of a perturbation solution of eq 5.4-5.5. The quasi-steady method then

consists of solving the steady-state form of the problem and locating the

phase change boundary with the use of an equation similar to eq 5.6.

Clearly the accuracy of the quasi-steady method depends upon the magnitude

of the Stefan number, which is the ratio of the sensible to the latent heat

for the material. For systems with a large latent heat relative to the

sensible heat, it can be expected that the quasi-steady approximation will

be reasonably good. This covers soil systems and many phase-change

materials used for latent heat storage.

The utility of the quasi-steady methods lies in the fact that for many :e -.

phase change problems the equivalent steady-state solution can be written
down immediately or easily found. -

The solution to eq 5.7-5.7b, which is well known and will be useful

(Lunardini 1981a), is

Sf {tan-! + tan-' ffi 1 tan- 2 = f(c,E) (5.8)

if 7r
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5.1 GENERAL QUASI-STEADY RELATIONS

General equations can be derived which will be valid for a class of

important phase-change problems. Assume that the solution to the quasi- 0

steady form of eq 5.4 is

1 = Al(T) + Bl(T) f(C,F,) • (5.9)

This equation, when combined with eq 5.4, gives

f -f
0 (5.10) ""

I f0 d

The function f is the solution to the equivalent steady-state equations and

f is the value of the function on the phase-change surface where the

temperature is at the fusion value.
k,4%

Also let

2= A2 (T) + B2 (T) f( ,E) " (5.11)

Then using eq 5.5a,c,

f2 -f  (5.12)f •f
0

Once fo has been determined, the total solution will be known. Equation

5.6 will be evaluated at only one location on the phase-change boundary:

T T'T ~ ~ -f-I 2 2d (5.13)

T -T 3m' am, it dT
p 1

The relation between dp', the small amount of material thawed during dT,

and dAo is shown in Figure 5.2:

dp' 3E ) d& (5.14)

0

Also

a = _/( €2 +(!t2 (5.15)

With these relations eq 5.13 is

T - T d
1 -Tf a 8(f 2 0 (5.16)

T - T -1 + -
"r dit dT

p f o o ov 00
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d.p',.. %

dt °  Figure 5.2. Geometry for
thaw at (o, ) -.

It is necessary to consider the effect of the insulation since the

temperature of the ground insulation interface Tp is an unknown function

of time. There are several ways to handle the insulation.

5.1.1 Method I

The heat flow through the insulation will be equated to the heat flow

through the thawed soil at = 0. This concept has been used by Seshradi S

and Krishnayya (1980) and by Lunardini (1981b):

k _ a(0,0) (T - Tp)
- (T Tk p p (.7a p f i d (5.17)

By using eq 5.10, this yields

T -Tp f"_"1

T T 2a af(0,0) (5.18)
p f I 1 -f 0 ac

where a is the insulation parameter given in the nomenclature.
The general interface equation, eq 5.16, is now

1 a f 2 d0
af(0,0) f = r dr (5.19).fo - I + 2a 0 o '",

0 aCO0

The final, steady-state, or limiting solution occurs when d&o/dT 0

in eq 5.19. This is ]

I + 8 - 0 (5.20) " ...

ciaf(0,0) f 4
fo 1 + 2a fO,).m%,
000

or p444

fo, =---[1- 2a af(0, 0) (5.21) -
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The heat flux, into the thawed soil, at the center of the heated surface is
3TI

q = -kl ( y z , 0 (5.22)

This can be written as

q -kl(T - Tf) af(O,O) (5.23)
_ f(o,o). "523

a[l - f (a (E

To evaluate eq 5.19 it is only necessary to find the appropriate,

steady-state, geometric function f.

5.1.2 Method 2

This approach assumes that the effect of the insulation is accounted U

for by considering an excess layer of soil with a thermal resistance equal

to that of the actual insulation. The excess soil layer is only applied to

the thawed zone temperature relations. The concept was introduced by

Porkhaev (1963, 1970).

The temperature equations are

T -T ff ffT1 -f 0'-f

1Tp -Tf 1- f (5.24)

p f o

2 0'T2 - To ~oi

2T o~(5.25)
f 0 0

where f' is the steady-state solution, with the excess thawed soil for

insulation, and g is the usual steady-state solution. Equation 5.3 then

becomes ,

1i af'2 a f'2 + _ ( )2 +(_)2( ),

00 0 0

2.- /(-)2 + (- ) 2 0
Sd (5.26)

The center heat flux to the thawed soil is .

k Tf) f'(,0) (5.27)

a(-f')  IF (2

While both methods approximate the steady state solution, when an

insulation layer is present, the first method gives more accurate results

(Lunardini 1982). A still more accurate approach would solve exactly the
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steady-state problem, probably by using complex variables with a Schwarz-

Christoffel transformation.

The same relations apply to the freezing case if

= 2k1 (Tf - Tp) t/(ira2L) and region 1 is the frozen layer.

It is now possible to examine, quantitatively, several practical

geometries.

5.2 SEMI-INFINITE STRIP

The semi-infinite strip can represent roads, shallow rivers, or very

long rectangular buildings. The geometry of the system is shown in Figure

5.1.

The steady-state solution is given by Lunardini (1981a) - see eq 5.8 -

and the geometric function f is

f i tan_1 2 F i = - ftan-1 r--.- + tan-' . (5.28)

Through the use of eq 5.28 and 5.19 the phase change interface equation is
[(,.2 + F2 1 ) 2 + 4 E 2 ] dt .

dT = 0o 0 1 (5.29)

(2 2 -lf 1 +-
0 - E0 f-i -

Thu s 0 iT
•..Y

S [(W + u - 1)2 + 4u] du (.30)

0 (r2_ u2 l)[ 1
f 4a- f

0 it

where f =i tan-' r 2  2u
0 7 + u2-i -...

The limiting interface, at T = -, is . .

= cot P, + Cct2 Pi - ( - 1) (5.31) -

where

p1 (w + 4a)

Since eq 5.30 is valid for any location C, it will be convenient to

evaluate the equation at C - 0. This is along the axis of symmetry for the

geometry. Then

T 04u
2 + ()du ---- 3

0 4 +

f(u) -(1 + 4a f(u)

161 ~.d
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where

f =- ctn_ u
fr

y = the value of Eo along the axis of symmetry.

Equation 5.31 reduces to S

Y. " cot [. (W + 2a)] . (5.33) wa

Since the value of fo is constant, the value of the thaw depth at wo

any , yx, can be found as a function of the center line value y:22 _12 .j%
-1 (Y2 _ I) (5.34)

x 42y42

When y < 1, the phase change at the edge of the strip ( = 1.0) is zero. -

Equation 5.23 for the surface heat flux is

2kl (T Tf)
q = l + 4a f (

iT 0

Equation 5.32 can be evaluated exactly if a 0. For this case

T (I+ ( + -- f (I - y) + ln(l + y _I Y 21.(5.36)
.1. 37 36

Equation 5.32 was evaluated numerically and plotted as Figures

5.3-14. Equation 5.31 is also plotted as Figures 5.15-17 for various !

values of .

The temperatures, in the thawed and frozen zones, can be found with A.%

eq 5.10 and 5.12. <

5.3 RECTANGULAR BUILDING

While the semi-infinite strip can represent a building with a very

large length to width ratio, it is useful to have solutions for any aspect

ratio. The geometry is as shown in Figure 5.18.

The steady-state solution is given by Lunardini (1981a) and the

geometric factor is

f= -i { tan" (-+)(n~n) -tan- ( -1)(+n)
,/f2 + ( +I)2 + (n*n) /2 + ( -1) + (nn) .

-I ( +1pn-n) LI ~ 1l~ll- tan --- + tan - n (5.37) -
/22 + (/+12 22 + (C_1)2 + (rl_n) 2

where n = b/a is the aspect ratio. S
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The calculations will be carried out along the axis of symmetry, C = nl

: 0, and the geometric function can be written

f( ) : 2 tan-' ( n ) . (5.38)
7 /&2 +1+n2

Equation 5.19, for the phase change interface, is now

T I B[u 2 (uZ+l+n 2 )+n 2] u 2+1+n - du
n 0 (2u 2+1+n 2) +

f -1 0eln
0 7Tn"

where

fo 2t- ( t an

u/u + I +n 2  "

As the aspect ratio n becomes large, eq 5.39 will reduce to eq 5.32 for the .- %

infinite strip. Thus the infinite strip is represented by eq 5.39 when the -

aspect ratio is large.

11
The limiting or steady-state solution is

+n2 _2_2 (,+,2) 1

= 2 +2 cot2 [8 2 n - 2 . (5.40)2+0n 2 '.e

Numerical quadrature of eq 5.39 leads to the plots given by Figures

5.19-54 for n = 1, 2, 3. The limiting, steady-state values are also given

in Figures 5.55-57.-.6

5.4 CIRCULAR TANK

Storage tanks are often used in cold climates. The solution for heat

transfer from a circular tank, shown in Figure 5.58, follows in the same

way as for the other geometries.

The transient solution for the temperature in a semi-infinite medium

initially at Tog after a surface area Sl is disturbed with a temperature

Tp, is given by Lachenbruch (1957) as- 2 J--(51.

T - T _ r % ,'rT- z __et __ dA
0 -z e + erfc (d) A (5.41) -#'

p O S 1 VKtK
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- -I V--. A S P -1

'X

y Figure 5.58. Circular tank I %

zon ground surface,.r

where r 
2 = (x-x')2 + (y_y,)2 + z

2  .%',

x ,y I = coordinates of dA in S .,. 
. ..

The steady-state solution, t + 0, reduces to '','

T o z dA "%'

T-To = 2'n ffS - (5.42)

Equation 5.42 can be integrated for certain simple eometries such as the

infinite strip or the rectangular area already discussed. A general ,,%

solution for the circle is not available but the teperature along the ,

z-axis, x =y =0, can be written immediately: 
%q

T T

0 = 1i z (5 .4 3 )

S z2  + ai" 
'.

The eometrc function for this case is then '--

.(5.44)

2+ a

Equation 5.19 for the phase-change interface depth can then be witten,- -,.

along the axis of symmetry 
..e..,.

' W
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c 2 )3/2_ ."

2 (u 2 +1) du
-- f ) c d (5.45) '

f(u) - I- 2a f(u)

where f(u) = I u

Equation 5.45 is plotted on Figures 5.59-70 for various values of a and 8. - 0

The limiting solution is %

1 (5.47)

/ 2aS~-

The limiting solution is plotted as Figure 5.71.

The single phase solution (8 = 0) can be written explicitly as

41 c 2 2 /c+ !+ -
S- + + a (2 +5) 1 + 31n (E + )]} • (5.48)

-T 2 + c 2 I c c c c

NOMENCLATURE - CHAPTER 5

a half width of structure or radius of tank

b half length of structure

C volumetric specific heat

d insulation thickness

f steady-state solution geometric function e

ft modified steady state solution geometric function e % .

f value of f on the phase change interface

00

f steady-state solution geometric function

g value of g on the phase change interface

00

k thermal conductivity

kL2  kL/k.

L volumetric latent heat

L effective latent heat = L(0 + k12 OST + S T/2)
eT
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• '.% %

m outward normal from phase-change interfare

m I m/a 
1 .

n b/a S

p distance along outward normal to phase-change interface

p p/a "

pI B(O + 4a)/(I + 0) -•

q heat flux from bottom of insulated structure r

2 (x-x,)2 + (yy)2 + z2

s distance along phase-change interface

s' s/a

S area of phase-change interface

2 02
SS/a

S1  surface area with disturbed temperature

C I  - Tf)

ST L Stefan number

t time

T temperature

T freezing temperature 0

S T ground initial and surface temperature
* 0

T temperature of bottom of structure
p

T temperature of insulation/ground interface
p

V volume of region changing phase
VI 3

V' V/a3

xyz Cartesian coordinates

Xo Z°  Cartesian coordinates of phase-change interface

x ,y ,z .artesia
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k d nslaio parameterii 2a ns ato

(T f T 0)

k2 ( f)

vale o tcat center of semi-ifinite strip

YX value of y at any location C

al, maximum or limiting value of y j

x/a

0 x /a

ny/a

Kthermal diffusivity 
,~,

z/a

0 z0 /

value of Eo beneath center of circu'lar tank
c

Ste ay stone nil ii
bneh :enter of KL

2.5.iihrI
W I

2.0

A ---

0.5.

.3.
3

0...

F
5 . . 1 0 % ' * S -



limiting value of Cc

CB value of Eo at center of rectangle

C limiting value of EB P

2c S t
T , dimensionless time

ia

T- TNT* 2/T

T -T

0 f%

YTp T Tf 1 f
2 0 f,

T2 - T fp f o

M 
-T

Subscripts

thawed region

2 frozen region %

f fusion or frozen

i insulation S

,." l*
% %0%
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CHAPTER 6. CYLINDRICAL PROBLEMS WITH OUTWARD GROWTH OF INTERFACE

The previous chapters examined problems in the Cartesian or plane

coordinate system. Of course, many practical engineering shapes are better

adapted to curvilinear coordinates, especially the cylindrical and spheri-

cal systems. This chapter will discuss problems expressed in the cylindri-

cal coordinate system.

For plane problems we saw that the similarity solution technique

yielded an exact solution to an important practical problem - the Neumann

solution. The similarity technique was also adaptable to other useful

problems, although they are all essentially extensions of the Neumann

problem.

In contrast to the Neumann problem, there are no general, exact, solu-

tions for practical phase change problems in cylindrical coordinates; no

exact solution has the same applicability as does the Neumann solution. -

Since this is an important geometry for engineering applications, a 1

significant effort has been expended upon analytical solutions--limited to V

certain domains--or approximate solutions.

A formal solution, in cylindrical coordinates, can be found as

follows.

The energy equation (see Chapter 1, and Nomenclature at the end of

this chapter) is •

1 a aT 1 3T
r = at (6.1)

or

a T 1 3T 1 9T (.

arr+ . . . . .
(6.2)aat

Let ub consider the transformation

2=r (6.3) 0
4at

Then eq 6.2, is transformed to

d2T T
- + (I+n) dT = 0 (6.4) 0

n
dn dn
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The transformation

n _r

2/-a

also works, leading to 0
d2T 2 dT

n -T + (1 + 2n )= .0A
dri dri

A formal solution to eq 6.4 follows from integration:

cc -U
TTi eu T C 0. (6.5)

The exponential integral is defined as

EZ (z) f e__dt (6.6a)
z

for the complex argument z.

Also, for the real argument,

e -t

Ee(x) f - dt. (6.6b)
-x

These relations are often written as
0

-Ei (-x) - E (x) f e__ dt .(6.6c)

Series expansions can be written (Abramowitz and Stegun 1964) as 9 IN

Ei(-x) = e + Inx + -- nnI

n 0 nnE W -Y+ inx + I. L_.
Ei e = n - nn!

n=I

where Ye - 0.5772157 . . . is the Euler constant.

The exponential integral functions are extensively tabulated (see

App. E). Thus a formal solution to the energy equation in cylindrical

coordinates is

T - -C Ei(-x) - C EL(x) .
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While the transformation n will reduce the energy equation to an

ordinary differential equation, it cannot transform all boundary and

initial conditions appropriately. Consider relations at the phase-change

interface. If the phase-change interface radius R has the following form 
0

R - 2x /t

then
l i m + 2-_

and the boundary condition transforms acceptably. Also

urn +ico
t-o

and

limn +c,
n4

which are appropriate. However
r2

lim n + - ;
r.r

F 0

thus boundary conditions at a finite radius will not work. The only

similarity solutions possible will be for ro = 0 or for problems with no V

conditions to satisfy at a finite cylinder radius ro . These will be

discussed shortly.
0

The energy condition at the phase-change interface is given by the

same relation as in the Cartesian case: 0

-kDTI T2 dR
-k1 i + k 2 Tr = - pi - • (6.7)

The upper sign is for melting and the lower is for freezing. This assumes

that the interface motion is in the positive direction of the coordinate r.

The medium of interest can be the region exterior to a cylinder

(outward phase change) or it can be contained within the cylinder (inward 0

phase change).

6.1 OUTWARD PHASE CHANGE, INFINITE DOMAIN

6.1.1 Freezing of Subcooled Liquid

Carslaw and Jaeger (1959) give an exact solution for the case of a

subcooled liquid which freezes while the solidified region remains at the N
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I --1

Solid Liquid

1 0

Figure 6.1. Freeze of subcooled

liquid.

fusion temperature. The latent given up by the liquid is used to increase

the subcooled liquid to its freezing point. For r < R, the solid--region

(l)--is at the fusion temperature.

The basic equations, referring to Figure 6.1, are 0
*-', '- ;

T = Tf ; r < R

1 a aT 1 aT ' q

T (r) - ; r > R (6.8)

T(R,t) = Tf (6.9a)

lrn T(r,t) =T (6.9b)
0 ?

T(r,o) T (6.9c) 9

k Tr (R,t) = -pt - (6.9d)

The solution follows directly from eq 6.5:

T = T + (T - T ) Ei(-n) (6.10)
o f 0 Ei(-A,)

R -2 X t" (6.11)

X2 Ei (_X,2) e , 2 + STo= 0 (6.12)

where

s - (T-T)
To Tf O

r
2
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6.1.2. Continuous Line Source Along the Origin of an Infinite Medium.

Consider a line source which extracts energy at the rate Qs, per lie.

unit length, along the origin. An exact solution is possible as discussed

in the introduction. Carslaw and Jaeger (1959) give the freezing solution

as
Qs2

T, - Tf + 4 Ls {EE (-n) - X2) 0 < r < R (6.13)

(To - Tf

T2 = T - 2 E (-n2 ) r > R (6.14)0 E i (-ail2 X2  i

R = 2A Va t (6.15)

_X2 k21 e - X2Q* e + = -(6. 16)

E (-a 1 2 X2 ) ST

where

= r2  
%ni =4a t

QSS
47rk (T O  - Tf) . ,

0~ f

cl (T - T f)So of f

ToI

For the thaw case, one should replace Qs by -Q. (heat input) and use,-,£

STo for thaw.

6.1.2.1 Line Sink at Origin with Extended Fusion Temperature Range 0

An extension of the method used above can be used for the case of a Z

material with an extended fusion temperature range. Ozisik and Uzzell

(1979) considered two relations for the solid fraction-temperature ..

function: 0

T2 Ts
s su[I T (6.17)

su£ s %

R2
f f ( ) (6.18) 5
a su R2
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where

fs fraction of solid material in mixed phase zone (zone 2) .-.-

fsu silid fraction in mushy zone at solidus front.

T t,T s  liquidus and solidus temperatures of material

R, radius of solid
R 2  radius of mushy zone (zone 2).

The latent heat released is handled like an energy generation term:

df
q111- P E dt ' (6.19)

In reference to Figure 6.2, the equations are

a3T, 3T,

a (r = 1 0 < r < R1 (6.20)

1 a aT2 p1 dfs I aT2

r ar(r - + =
2  t Ri < r < R2  (6.21)

3T3  3T3

1 a 1r r -r-) = r > R2  (6.22)
r ar ar a3 ut

The heat sink, at the origin, satisfies

aTI
lim (2Tk -- ) = Qs (6.22a)

r+o

T£(RI) = T2 (Rj) = T (6.22b)

aT l (Rj, t) aT2 (R , t) dR 1  % .

k, ar -k2  ar =P1(1-fsu ) (6.22c)

T0  -.

-- r °, ti

S. 'd
0-A

Sol
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T2 (R2 ) - T3 (R2 ) - Tt  (6.22d)

3 T2 (R2 , t) 3T3 (R2 ,)

k2  -r - k
3  ar (6.22e)

lir T3 (r,t) = T (6.22f)
r+00 0

T3 (r,o) - T o • (6.22g)

Equation 6.21 can be written in the form of eq 6.20 if an equivalent

thermal diffusivity is defined. By use of eq 6.17 this is

P9 f
su + (6.23)

= k2 (T -T S ) a2

The solution is as follows:

T T + [Ei(-n ) - Ei (- 2)] 0 < r < R t  (6.24)T=Ts  , -..,

= p [ + T El (-y2) Ti Ei(-Q 14 X
2)] (6.25

R L < r < R2

T - T _ o i V=
T3  T oEi (-n3 ) r > R2  (6.26)

o Ei (-a43y2 )

Ri = 2A j1-7 (6.27)

2 4= 2y 'E . (6.28)

The parameters yl, X, are found from the following two coupled equations:

QS 2  k2 ATe
- I4 X 1 2

1 -l  Xa(0 - f )pI (6.29) 0
r p su

El2 2Ei (-a43y) -y (a43-t .

- k32* 3 e (6.30)
p

where

2 - l+2 d..p = E i ( y Ei (-a 14 +  A I

3 - (Ti - To)/AT

AT T,- Ts
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6.1,2.2 Line Sink at Origin with Moisture Flow

Boles and Ozisik (1983) obtained an exact solution for freezing about

a line sink with moisture flow in the surrounding medium. A moist, porous

medium is initially at uniform temperature and moisture content as shown in .

Figure 6.2. At time zero, a line sink removes energy at the origin, caus-

ing freezing and moisture flow toward the freezing interface. No moisture

occurs in the frozen zone and the moisture flux follows the relation (see

eq 1.70) given by Luikov (1975):

aw 3T
amp o + 6 G ( <6.30a)

where 0

SmPo = hydraulic diffusivity

6 constant factor for the mass flux induced by thermal gradient.
G

rn = mass flux rate

w = mass of moisture per unit mass of solid component -

Po = density of solid soil skeleton.

The governing equations for energy and mass flow are

I 3TL a T1
r - (r = - ~j-0 < r < R (6.30b)r @ r -r--) a t .'-'-

9T2 3 T2 """°

T _ (r - a-) = R < r < (6.30c)"-"

6 3T
a r 2w) + 2 -12w R < r < . (6.30d)

r ( r r (r a at
m

The boundary conditions are -

3TL  S
lim (21 k I r = Qs
r+o

T(R,t) = T2 (R,t) = Tf '.

T2 (r,o) = T

w(r,o) = w %
0A

lim T 2 (r,t) = T
r-O-O
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%

lim w(r,t) w
r+=

3T 2 (%R, t) '
3w(Rt) + G =T0R-t

r G r =0

3T, (R,t) 3T2 (R,t) dRk l - k 2 pr w (R,t ) dRe ¢
t2  3 dar

Equation 6.30d can be uncoupled by using

Z(r,t) = T2 (r,t) +(a 2  )(w - w(r,t)) (6 .30e)2a m6 G (63e),

The system of three homogeneous diffusion equations is then solved using

the exponential integral:

T = T + s [Ei (-i) - Ei (-X2 )] (6.30f)
1 f 41rk, 1

Ei (-n 2)

T = T + (T - T ) ( , (6 .30g)
2 o f o Ei(-a 1 2

2

2am2(Tf - To) 6G (alm-al2)X2e-O

o ( f -m2 ) 6I e 12 Ei(-n ) - Ei(-n )](6.30h)

0 0 -a )Ei(-a 2
2  [Lm-a 2  m 2-

where A.-"

2
ni =4ait,'-€

-
4 i~

R : 2X /'T (6.30i) _

Q 2 (Tf T)e -a2X
s -X f_______0 ___e % 2 -X

47 e2  Ei(-a1 2
X )

2

2 (a - )X2 2
a 12A 1w 

6 G (Tf - T) [1m 12  Ei(-a A.
- 2 -a (} (6.30j)

c2  w (1 - am2 ) Ei(-a 12  ) m2

6.1.3 Zero Superheat and Subcooling •

A number of solutions are available for the case when the temperature

of the medium is initially uniform at the fusion temperature.

6.1.3.1 Constant Phase Change Rate

A simple system, which has an exact solution, requires that the •
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Region2 temperature gradient at the phase-change interface

Region I  be a constant. The problem (see Fig. 6.3) can be i
written as follows:

R0
1 a ( T 1 a T NA

r a r t a r0 ( 6 .3 1 )

V T(R,t) f Tf (6 .31a)

Figure 6.3. Cylindri-
cal phase change nota- k aT(Rt) dR
tion. k rdt (6.31b)

T(ro,0) = Tf . (6 .31c) 4

The temperature gradient at the phase-change interface is specified as

aT (R ,t ) _ G • (6 .31 d )
ar

It is not necessary to solve eq 6.31 in order to find the location of the

freezing front. From eq 6.31b and 6.31d,

dR k G.

Thus the rate of movement of the phase-change interface is a constant. The

location is

kG t +
R= t+r

Pt 0

or

Gr
8 + 0 (6.32)

(T -T %
f5

where S t
ST

2
r

0

ST = (Tf.T.

8 R ~
r

Kreith and Romie (1955) used an iterative series solution for the0

temperature of the solid. This will not be given here since the problem isNOk
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rather impractical because of the necessity of imposing a complicated

transient temperature at the cylinder surface.

The previous solutions comprise the known exact solutions for

cylindrical phase change. The following details relate to approximate ,

results.

6.1.3.2 Zero Sensible Heat, ST = 0-

If the sensible heat of the material is also neglected, then

particularly simple solutions are available. Since the Stefan number is a

measure of the sensible heat, this situation is equivalent to assuming that

the Stefan number is zero. Carslaw and Jaeger (1959) presented a thaw

solution when the surrounding medium is at the phase-change temperature

Tf, using the quasi-steady approximation. The problem is as follows:

d dT = 3
-r = ( 6 .3 3)

T(R) = Tf (6.33a)

T(r) T (6.33b) .
0 p 

*

From eq 6.7, the interface energy balance is now

-(k +T dR (6.33c)
3r t ar f = dt

The solution for the phase change location a is straightforward and is

1 2 12 ain a - + T (6.34)

Equation 6.34 will overestimate the thaw around the pipe since all of the

energy transfer from the pipe will go into thawing. A crude correction can

be made by using an effective latent heat in place of £ (see App. A). The

phase change interface is then given by
S 2 +

TT 1 +2 - (6.34a) "t" = (1 + l) n 8 + 4"(.4)",€.

The heat transfer at the cylinder surface is

271 (T- Tf)

q c S

qc 27Tk19P -n
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6.1.3.3 Heat Balance Integral Approximation Lo

The heat balance integral can also be conveniently used, for the zero

superheating problem. The equations are

a (r 3T r aT

T(R,t) = Tf (6 .3 5a)

T(r ,t) = T (6.35b)

T(r,o) = Tf (6.3 5c)

-k 3T(Rzt) dR 3
ar Pd (6.35d)

Integration of eq 6.35 once, over the space coordinate, yields the heat

balance integral equation:
3T(r ,t) d0 dR -O

8T(R,t) 0 rO o ARar - r = RTf (6.36)8r 0 r dt f dt

where the integrated temperature is

R
e =f rT dr . (6.37)

Lardner and Pohle (1961) noted that the logarithmic approximation is more

appropriate than a polynomial in r since the area is varying with r. They

suggest that T = f(r) in r be used as an approximation. The temperature

is thus assumed to be a logarithmic relation satisfying eq 6.35a, b:

In r
r 0

T = T - - Tf) R (6.38)P ~in - !
r

0

Equations 6.36-6.38 then yield a differential equation for the phase-change

location:'. *"

[( 2

2 -4 n S T

This can be integrated to give

S n n 2 2 - =
T1 8 2 2 (lnB)_, + E In.39aa

n n-1 nn! + a- - -
T  (6.39a)
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Figure 6.4. Thaw beneath a pipe, infinite

system.

The solution can also be written in terms of the exponential integral as

S 2 2
-T [$2 _ I - Ei(21nS) + ln(21nS) + y e + -i+ = T . (6.39b)

Equation 6.39 reduces to the zero sensible heat solution, eq 6.34, when the

Stefan number is zero. The phase change vs time is shown in Figure 6.4. . , -

Bell (1979) used up to eight subdivisions with linear temperatures in

each subregion. Even with eight subdivisions the results differed from eq

6.39a by less than 1%. The use of multiple subregions eliminates the N

problem of the temperature guess but at the price of a large increase in

computational effort (see App. B for details).

6.1.3.4 Outward Freeze of Cylinder with Convection/Radiation

We can use the heat balance integral to obtain an approximate

solution. The equations are

a[R aT(Rpt) aT(ro't) 1 d d R dR
ar r 3r = 

- rT(r,t)dr - TfR dt (6.39c)
r

0

T(R,t) = Tf (6.39d)

aT(ro~t) B I
ar t - [T(r ot) -To

]  (6.39e)

0

aT(R,t) = pX dR (6.39f)

ar dt .,

A logarithmic temperature profile satisfying eq 6.39d,e is
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,~~. .1. -.V

-T +Bi (Tf- TM)
T T f + R In R

+ B In r

0

where .

c (Tf - TJ).

a S t
TL. =

B4 = R 
I-.r

0

r

0h r°

The energy equation, eq 6 .39c, then yields a relation for the thaw

interface radius R: 
•

d r 4 (I + Bi lnB + 1 1 Bi(l + 2 lnO - 82) -. 4.

dT4Bi )0 + (42(0 - + (1 + B n) )jd.(6.39h)

The solution to eq 6.39h is

-2
T S' I (1- -)1n (I+B I nOl+O2 -1-e [E + 22n

+ I [( 1(2

--1) + 821n81 . (6.391)

It can be shown that eq 6.39i reduces to the case of a cylinder with a N* %

constant inner temperature when Bi + -. This solution has been given in

Section (6.1.3.3), 
eq 6.39b.

Vives and Perry (1986) measured the solidification of tin in an 0

annular region with and without superheating. Equation 6.39i predicted the

solidification time very well for the small superheat case.

6.1.4 Finite Superheat

The more practical problems, for which the initial temperature is not

at the fusion value, present significantly more difficult analyses. ,g.

Several methods have been utilized. All of the problems assume that the

pipe is buried at an infinite depth. A finite burial depth will present

very severe restraints on the solution methods.
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6.1.4.1 Quasi-Steady Solution N

A simple solution can again be obtained with the quasi-steady state . ,

approximation. Khakimov (1957) investigated the problem and introduced the

concept of a thermal layer of influence around the buried pipe. Let us

consider the case of thawing of a medium initially frozen at T = To . A

hot cylinder with a surface temperature Tp is inserted in the medium at

time zero. The thaw effect is asumed to extend, at any time t, to a finite

distance 6 as shown in Figure 6.3. That is, the temperature of the medium

will be To at some location sufficiently far from the hot cylinder. This

concept of a temperature penetration is also used in the heat balance

integral method and in boundary layer theory.

Based on experimental evidence, Khakimov (1957) assumed that Q = 6/R

was a constant equal to 4.5. This assumption of constant Q for a given

ST and * = (Tf - To)/(T s - Tf) is correct for the Neumann

problem (see Lunardini and Varotta 1979), but it is invalid for a

cylindrical system. Nevertheless it does simplify the equations and allows

a reasonable solution.

The temperature will be the solution of ,I
d (rdu
d (r -- ) = 0 (6.40)

for each region with the boundary conditions

u = u 2 =U f r = R (6.40a)

= u r r (6.40b)

u= 0 r 6 (6.4 0c)

where

u = T - T
0

The solutions for the temperatures are
(Tf - T ) ro''i :..

I= -
p  ln (-) + u

ln _R) ro0
r

0
ufin r

The total energy added to the thawing medium will be the latetit heat to
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thaw the layer between ro and R and the sensible heat to increase the

temperature of all the layers up to r = 6. Thus,

R 6
]k2 -_ r 2 ) [t +C 2 (T f -T o )]+ 2ir C1  J r (T1-Tf) dr + 2C 2  J r u dr.

r R 2
0

Carrying out the integration yields

Q it (R2-r2)[L+C 2(Tf-T)J + 1TC{(R
2-r2 )(T-Tf)

Tf-T) ) r 2

+ R (In R + + 
7r C2(Tf-oT)R p (6.41)

in R r0
r
0

where L = volumetric latent heat 0

C1 , C2 = volumetric specific heat of thawed and frozen layers
p 2f12 1)

During a small time increment the change in the energy absorbed by the 0

system must equal the energy added to the system at the cylinder surface:

du1  dQm  '%

q = -k 2rr (d-) r= d (6.42)
p 1 o djr )r=r dt

Using eq 6.41 and 6.42 yields

dT = { n 1[i + STC2 ( + p)] + - [2B in"O

The solution to this equation is 0

4= (28 2In$-2+1)[l+STC T21(+p)J+ST[8 2 _1-gi(21n$)+Y e+ln(lnB)J . (6.43)

The quasi-steady method gives a solution which reduces to that of the heat

balance integral approximation, eq 6.39, when * - 0.

The method is simple but limited in application to first estimates of

thaw depth.

6.1.4.2 Heat Balance Integral Solution

The heat balance integral method may also be applied to the problem of

finite superheat but the labor is considerably increased. This problem is

the cylindrical analog to the Neumann problem. Note that the labor

required to arrive at a solution far exceeds that for the plane case. The .l *-I-

problem may be stated as follows, for a melting system (see Fig. 6.3 S

again):
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a r = - (6.44)

r (r r-) at (.4

TL(R,t) = Tf (6.44a) °
T ,(rlt) = T (6.44b)

T2 (r,o) = T (6.44c)

aT(Rt) aT2(Rt) dR
dr + k2  ar " p dt (6.44d)

a T2  r aT2
ar (a r a2 ar (6.45)

T2 (R,t) = Tf (6.45a)

T2 (6,t) = T (6.45b)0

aT2 (6,t)

ar =0. (6.45c)

The integrated temperatures are defined as usual:

R
ej =J r Tdr

r0

0

02 =J r T2dr.
R

The heat balance integral equations are

3TI(R,t) _ aT 1(r ,t) dO1 R 0
a, [R ar r ]= - RT y.. .

o ar dt fdt ., .,

aT2(R,t) d2

3r dt o dt dt

An approximation for TI that satisfies eq 6.44 a,c is

(Tp Tf)In (r)

p In R
r 0
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A similar approximation for T2 that satisfies eq 6.45a-c is+ InWk

- T (Tf - T) r

if- R In

The previous relations now lead to the following system of equations to

solve:

G12 ST dt i + I- (6.46)

F(,) 2 B2 - -lnf_ +l
n! r<2_1)+(n22 (l--S)in , +" 1-+ 3 (S13 -1)] (6.47)

[ S T ( n 4 ~2  )  +  S la] k _ 1 1
T2Id in 21 1-I + d Inn

where a - S/R.

Equations 6.46-48 were solved numerically with a fourth-order Runge-

Kutta, predictor-corrector technique (Lunardini 1980, 1981). Since the

problem, as specified, is initially singular at the origin, the Neumann

solution was used to start the solution. Sparrow et al. (1978) solved this

problem numerically, with a12 - k12 = 1, for a range of ST and *, also
using the Neumann solution for starting. The much simpler method presented

here is within 5% of Sparrow's results. The calculations have been

generalized for a range of a12 , k12 , pertinent for soil systems, and are

presented in Figures 6.5-6.21.

Tien and Churchill (1965) also numerically evaluated freezing outside

a circular cylinder using a numerical method that was totally different

than that of Sparrow (1978). Their calculations are more extensive than

those of Sparrow et al. (1978) and also agree very well with the solution

presented here.

The numerical solutions, while very good, are not as convenient as

analytical solutions. Thus it is valuable to further examine methods with

which to obtain approximate solutions that yield acceptable accuracy.

6.1.4.3 Coordinate Transformation

A method suggested by Lin (1971) uses a coordinate transformation to %

reduce a problem with a variable phase-change area, such as a cylinder, to

one of constant phase-change area, the semi-infinite solid. Since the re-

lations for the semi-infinite solid are well known, this is a useful proce-

dure but it is limited in accuracy.
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Figure 6.21. Surface heat transfer rate vs time,
x = i.0.

The following transformation will reduce the cylindrical system to the

constant area case:

y - r in (L-) r (6.49) 0
0 r0

The phase change interface, which is the value of y when r - R, is related

by

r ln ( R (6.50)° r
0

The governing equations, for the cylindrical system, then transform iato ...

the following system, valid near the phase change interface whe-e r - R:

a 2 T k aT(n,n) aT
ay Pta ay Din

T(y,O) - Tf
- f

T(nn) - T .

T(O,n ) - T, -,.,,

Solutions of this system of equations are universal functions for all

cross-sectional areas. However, the solutions are only valid near the

phase-change interface. The system of equations need not be solved to use
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the method. The phase-change interface rate of movement is given bv

A(r o )!n k 2 T(n,n) 'e

cit TJE LA(R)J By

For the constant area case A(ro ) - A(R) and

dn = k aT(nn) = g(n)
dt pt By

Then the generalized case is
--0

d R r
- -R *.g~l)

dt R

Thus if the velocity of the phase-change interface for the constant area

case (Neumann) is given by

d- g(X)

then the phase-change interface velocity for the cylindrical system is

d r o
- - g(r In R

0 r.

00
The plane solution is given in Section 2.1.1. From this '

g(x) = x

where Y X/(2/-1t) -

Finally, the velocity of the cylindrical interface is

dR = 2y 2a (
dt R (6.51)

r0. R in

Equation 6.51 may be integrated to give -
22 ln -2 8 y

2 nT - + 1 S - T (6.52)
ST

This solution may be compared to the quasi-steady solution, eq 6.34, for

the case of no superheat, i.e. ST = 0, = 0. In the limit as 4?+ 0, the
parameter y is given by y,2 ST/( 2 + ST) and in this case, eq 6.52 is

identical to eq 6.34.

While eq 6.52 is an extremely convenient form for cylindrical systems, 
%

its accuracy is limited to certain ranges of ST, $, and time. S
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In comparison to numerical solutions, the result is accurate if T/ST

< 1.0, when 4 - 4. For lesser values of 4 the time limit when eq 6.52 is

accurate will increase. The relation is so simple that it may be of value

for quick, more or less crude, estimates, especially when 4 - 0.0. 5."

6.1.4.4 Effective Thermal Diffusivity .

Churchill and Gupta (1977) have introduced another method which allows

the Neumann solution to be used for more complex geometries.

The effective diffusivity procedure involves replacing the nonlinear

phase change problem with its linear analog which does not include phase

change. The thermal diffusivity of the latter problem is then replaced by

an effective diffusivity which includes the latent heat. Since many solu-

tions are available for no-phase-change problems, the method has potential

for application to numerous freeze/thaw problems.

The basis of the derivation of the desired effective diffusivity is

that the solution to the zero latent heat analog of the Neumann problem

(simply transient conduction in the semi-infinite medium) can be forced to

agree with the Neumann solution if an effective diffusivity replaces the

actual diffusivity. The location of the isotherm with the phase change

value and the heat flux rate for the zero latent heat plane problem can be

found from the standard solution of Carslaw and Jaeger (1959):

xf 2Vat erf- I (T p (6.53)

0 p

qp k(T - T)
p 0 p'64

These equations assume that the surrounding medium has constant properties,

k and a. Equating eq 6.53 and 6.54 with the appropriate relations from the S

Neumann solution yields the effective diffusivities for heat flux and phase

change position:

ae -a, ( + 1) erfy] 2  (6.55)

a e a ]2 (6.56)
erf-1 ( )

where a, is the actual thermal diffusivity.

Churchill and Gupta (1977) applied the method to cylinders and to
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freezing in a corner with good results. They used the exact solution for

the cylindrical, no-phase-change problem given by Carslaw and Jaeger

(1959). This required the use of tabulated numerical values.

Lunardini (1981b) corrected the equivalent diffusivities to account

for the variable properties of frozen and thawed regions. The corrected

effective diffusivities are then

I+ k2

"e/al 1 {[1 + ( 2 )0] erfy}2  (6.57)

"e/ 1 = r{ f __.__ 2 (6.58)

I + k12,)

The first step in the solution of the phase-change problem is to solve S

for the temperature of the conduction problem with zero latent heat. For

the case of a cylinder surrounded by an infinite medium, an exact solution

for the surface step-change situation is given by Carslaw and Jaeger

(1959). However, the solution involves an infinite series of Bessel 0

functions which were approximated by error functions for small values of

time. The final results are in graphical form. A closed form approximate

solution to this problem will be found by using the heat balance integral

method. This will introduce a further approximation in the final results 0

and the procedure need be used only when convenient, exact solutions cannot

be found. The freezing case will be examined but the results apply to

melting also. In reference to Figure 6.3, the heat balance integral

equ is are

av (r ,t) 6
-r d r rv dr (6.59)0 3r dt ro T0  6---a).

T(r,t) = To  (6.59a)

T(r,t) = 0 (6.59b)

aT(6 ,t ) :'%

3r 0 (6.59c)

where v (T - To)/(T p - To). For simplicity, a polynomial in r is

assumed for the temperature,

6- r )n
v r r 6 (6.60) %

r 0
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0 A

The solution for the penetration distance 6 is /

4 A3 + A2 = 2n(n + 1) L- (6.61)
3(n + 2) T

where A - (6 - ro)/r.

Volkov and Li-Orlov (1970) noted that the accuracy of the integral

method could be improved by integrating the energy equation twice over the

space coordinate. El-Genk and Cronenberg (1979) applied this idea to the

Neumann problem with apparent success. However, for the cylindrical

system, this resulted in considerably poorer results than those for the

simple integral heat balance for any given value of n > 2.

The solution for the actual phase change interface location is then

obtained by solving eq 6.61 with the value of the freezing isotherm and the

equivalent diffusivity of eq. 6.57:

-= [ - ".o5] f(a+d) 1 / 3 + (a-d)1 /3 _ 5.5} + 1 (6.62)

aS

a = 6930 -s ST -166.375

T

d = [a 2 - 27680.6406J 1/2

The root of the cubic equation used in eq 6.62 is not correct if a < d,

which occurs if T is very small. The value of 6 is found from the Neumann %

solution.

The instanteous heat flow from the cylinder and the total heat loss or

gain during a given time are also quantities of interest. The surface heat

flux rate is given by

qcj 20 ST (1+0)

eq = 2k -- = e (6.63)

where

e = (a+d) 1/3 + (a-d) 1/ 3 
- 5.5

as before, and eq 6.58 is used for the effective diffusivity.

The integrated heat transfer can be written in nondimensional form as

t
q dt ST e2  .. .

0
t 2 = (1+) j- ( - + e) • (6.64) S
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a,z=2;0'= 1.0

ST 1.0
(a) k2 0 . ,

' 2 -Effective Diffusiv ty Method

10
"  

100 10

Figure 6.22. Phase change location vs time. @ 1.0,
ST = 1.0, a = 2.0.

-- Effective Diffusivity Method

101 Heat Balance IntegralIot - Lunordini, 1980) -7

Cylindrical System

A 4 1.0 o0

T

Figure 6.24. Surface heat transfer vs
time, xt = 0.00.

The approximate solution given here compared favorably with numerical

solutions of Lunardini (1980), Sparrow et al. (1978), and Tien and .

0

Churchill (1965) as can be seen in Figures 6.22 and 6.23. Njj.

The comparisons confirm that the effective diffusivity method is

valid, for the cylindrical problem, over a wide range of parameters, but

, , '

the method cannot be applied when the superheat parameter is zero. ..
6.1.4.5 Constant Surface Heat Flux trn

The problems discussed so far have used a constant surface temperature

time, xm 0.00

for the cylinder. Goodling and Khader (1975) discuss numerical solutions

for a constant heat flux, Q, at the cylinder surface. The heat flux from .
the liquid region is accounted for by a surface coeffcent of heat

transfer as show an Figure 6.24. Thus the conduction equation need be

considered only in the solid region. Nondimensfonal equations are

,vlidfor, thecylindrical problem over a- wide range-.- of paramet., b

the method. ,. .cannotbeappliedwhe te superheat parameter. . .is zero. ..
6.14. Cntt Surface H Flu



I
3L20 1 o e+ e_ (6.65) ',.

Solid Liquid T, 2  
- - S -(6d v v aT2

R- -( 1 , T 2 ) =

-R 0

Figure 6.24. Cylindrical 
dT2  av pa

phase change with convec- B(0) = I
tion.

where

(T - Tf)k

Q r•
v = r/ro

T2 = Qt/ptro
cr0

S =Q-- t

h (T - Tf)

Q rO

0S

and the energy extracted is a positive quantity. Numerical solutions are

given for a = 0.25, p = 0.6, and S = 0.2-10.

An integral heat balance solution is given where the approximate

perature is defined as a logarithmic function. The integral solution is

T= 1 2d1 (665a)r p) + 4 ( P) 1+

i S 8ln$ a 2 S 1n a a
B S 0lnB a

6.1.4.6 Convection Boundary Condition

The quasi-steady method of Section 6.1.4.1 can yield an approximate

solution for freezing (thawing) around a circular pipe with convection at

the cylinder surface and an initial temperature of To .

The quasi-steady solutions for the temperatures of the frozen and

thawed zones are

B (T - T=) --
T T + i f T n r r r< R (6.65b)II f i R_ R o• =

R ln- R
i2r
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(Tf - To)
T2 = T + R in - R ( r < 6 . (6.6 5c)o 6n

6

The energy extracted at the pipe surface is •

O w (R 2 - r2 )[L + C2(T - Tf)] + 2wC 1  J r(Tf - Tl)dr
r o

6
+ 2NC 2  J r(To - T2)dr (6.65d)

Equating the conduction heat transfer at roto the time rate of change of

Qa leads to
C3(31ST [2 -1 B (1+2 Tn8_8 2 ) S00

dT [I + *. ST C2 1P 1 + B i lnBj + 4 1) + B1(+2 in0)l

T- 21]B (1+Bi 1n8) '

The solution is

ST(. i2 ) ln(l+B Ina ) + p2 e-2/Bl[E (2-+21ns)i

+ I__ )(2 -) + B21 n][l + ST C2 P] (6.65e)

where

P 2 In fl

R

T -T

of

In general the value of p decreases as the superheat (To - Tf)

increases. This is due to a slowing down of the thermal penetration as the

degree of superheat increases.

The solution given here will reduce to the constant inner surface

temperature as the Biot number becomes large.

6.2 OUTWARD PHASE CHANGE, FINITE GEOMETRY

The solutions for an infinite medium, discussed in Section 6.1, give

results which indicate a growth rate of the thaw zone around a buried pipe

that is too fast when compared to the numerical results of Lachenbruch
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TG Ground Surface

d,
x,Y)

Phase Change

T Y Interface, Tf

D, Region I Region 2
Thawed Frozen

Figure 6.25. Thaw around a buried
pipe.

(1970) for the transient thaw depth around a hot pipe buried in perma-

frost. The solution of Lachenbruch assumes two-dimensional heat transfer

with no heat transfer along the axis of the pipe.

6.2.1 Problem Formulation

The problem is formulated as follows (see Fig. 6.25):

2 2a T 3 T 1 3T

2+ y > 0; T < T (6.66)
x y CLat f

a T2  a T2  1 T

ax= T< T (6.67)
ax ay a2 at f

T(O,x,t) TG + 8 sin wt %
C

TffiTG y+ O

3T
T 0 x= 0 or x +

ax

T - Tp on the pipe surface

TL(X,Y) = T2 (X,Y) = Tf %

where X,Y = the coordinates of the phase change interface %

TG - mean ground air temperature

ec - amplitude of yearly air or ground temperature fluctuation %

W - frequency of temperature fluctuation (1 year).

The energy balance at the phase-change interface (X,Y) is %
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3T4  aT2 ax-':.k: -x k2 - = L a t

(x,y) = (X,Y) . (6.68)

T j T2  y
k j y k 2  -y L ;- t

The ground is initially frozen with the following initial temperature

distribution:

T(x,y,0) = T G + e exp (-y o- sin (t - y (6.69

T~~,0 G + c ex ~ 2a2  int-y 2a2

An exact solution to this problem is beyond present mathematical tech-

niques. Numerical solutions for the thaw depth beneath the pipe, as a

function of soil properties and temperatures, have been given by Lachen-

bruch (1970), Hwang (1972), and Gold (1972). While numerical techniques

allow great flexibility with respect to properties, temperature conditions,

etc., they are usually cumbersome and often expensive. In many cases pre-

liminary estimates will suffice, especially where site conditions and data

do not warrant the use of more exact analyses.

6.2.2 Quasi-Steady Approximation

The quasi-steady approximation requires steady state solutions as the

starting point for a phase change problem.

Solutions are available for the steady state (perhaps after phase

change ceases) using source-sink images or conformal transformations

(Carslaw and Jaeger 1959, and Lunardini

1981c). The results will be given for a TO

thaw problem, as noted in Figure 6.26, k d

but freezing is essentially the same. \\

The thermal properties of the medium

are constant, but different, for tem-

peratures above and below the phase

change value. Thawedk,t

6.2.2.1 Steady State Equations Frozen \ T,

The insulation surface temperature TZ

is assumed to be a constant T. This

is acceptable if the insulation is not Figure 6.26. Phase change aroundextremely thick. The temperature Tp is insulated buried pipe.
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evaluated by equating the integrated heat flow from the pipe to the heat

flow into the medium at the insulation surface. Then 14

T f = (T -T k (6.70)
f T f) + bc

where

b=

in ( + )

= kii In (ri/ro )

= do/ri

Tf T
= T -T f

The temperatures in the thawed and frozen regions are

T 1 - Tf 1 + k 21 csh- (d)
f k21 * (6.71)

T - T + be cosh -

p f

T 2 1 + k 21t (6.72)

T - T k21+bc) cosh' ii
f 0 2 oA

Equations 6.71 and 6.72 are written in terms of the origin and radius (h,

r) of an isotherm. The geometric function f is defined as

d

f(d,r ) cosh t (6.73a)t cosh -  V

2 2 2 2 V
where d-rt = do -ri

This can also be written in Cartesian coordinates as
2 2 :x +[(y+ /d-r 2

In 0 2
X2+[y - fd r '

f(x,y) = + (6.73b)

2 In -  _k
r i

In nondimensional form
2 + [ + a]2

f(, = In { 1 2 (6.74)
2 + ~-
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The value of the function f on the phase change interface is

2 2+ + a)2
b 0 0b + + (6.75)

0 2 +( -a)

'0
For the steady state the phase change interface is simply the Tf iso-

therm. This is given, from eq 6.71, by

k2 L*
f - (I + be) (6.76)

The limiting thaw depth can be evaluated from %

oa= ( + a)fo = + I (6.77)

(U + a) f - 1

In this equation o- denotes the depth to the bottom of the thaw in-

terface on the plane of symmetry where C. = 0.

Also the depth and radius of the final thaw bowl are

2f /b + .r:

e o- -6

(R./r) 2  (dfr) 2 -a 2  (6.79)

The insulation thickness needed to keep the soil frozen is given by Eo <

+ 1. Thus, from eq 6.75, be = 1/k2,0 and '}

kl1
( 0 (I + ak 2  (6.80)

The heat transfer, from the pipe to the surface, is

(1 + k2 1 0)b
q =2wk2 k21I(I + be) (Tf - T) (6.81)

6.2.2.2 Quasi-Steady Equations , *-.

The quasi-steady approximation does not attempt to solve the phase

change problem exactly but assumes that the phase-change interface moves

slowly so that at any instant the temperature profiles satisfy the Laplace 0%..

equation. This condition will be approached as the ratio of the sensible

to the latent heat - the Stefan number - approaches zero (Lunardini %. ... ,.

1981c). The motion of the interface then follows by satisfying the energy

boundary condition between the two phases. The energy balance may be S
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formulated and solved at various locations on the phase-change interface,

including the plane of symmetry.

The pipe and ground surface temperatures are always circular iso-

therms. The approximate isotherms will be circles, as has been noted for

the steady-state solution, although the true isotherms are not circular

since they are not constant coordinate surfaces of a bicircular transforma-

tion. After an infinite time, when the steady state is reached, all iso-

therms become circular. Thus, the intermediate-time, circular isotherms

required by the quasi-steady method should be reasonable approximations of

the actual isotherms.
7he

The temperatures, at any instant, satisfy the Laplace equations with

the form of the steady-state temperatures (eq 6.71, 6.72): 0

T1  Tf f (Tf T Tof) f__.8
T ~ ~ -_ +k (f of1) (6.82)

1 T - Tf 1+b- 21 (T -T f) +b

T -T T -T T
2 + [ (6.83)f T f TO  k2 1 (+b)

The value of the geometric function on the plane of symmetry, - 0, is p

+af( ) fi b I _-T -) •(6.84) S

Tof and Tpf are fictitious, transient boundary temperatures of the %

frozen and thawed zones that allow the phase change interface to move from

the pipe (or insulation) surface to the final steady-state position. These

auxiliary temperatures - a concept developed by Porkhaev (1963, 1970) - are

needed since only one location of the interface, that given by eq 6.76, is At

possible with the actual boundary temperatures.

Since the value of f is fo on the phase change interface, where the

temperature is Tf, then eq 6.82 and 6.83 lead to

Tf T of fo ,*Tp-T k f ) (6.85)
Tp -Tf k2 Ib

T - T k2(+be - f ) 0-
pf f 21 0 (6.86)

T - T (I + be)
f o

Thus the thawed and frozen zone dimensionless temperatures are

f-f
0
b-f (6.87)
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fL (6.88)

Different solutions for the movement of the phase-change interface can be

obtained by satisfying the phase change energy balance (eq 6.68) at

different locations. Hwang (1977) and Lunardini (1981d) satisfied the

energy equation at the lowest point of the symmetry plane while assuming a

plane interface. Seshadri and Krishnayya (1980) used the same concept but

evaluated the insulation temperature by equating heat flows only at the .k
bottom of the pipe. Thornton (1976) integrated the energy balance over the

entire phase change interface, rather than directly beneath the pipe. This

automatically restricts the phase change to a circular geometry. We will

follow Lunardini (1983), where the heat flux is assumed to be constant

around the entire phase change interface, using the value at the bottom of

the pipe.

The phase chancw radius is governed by

Ro z 2 (p+1) dz ,-
abtr3 = f Z (p~l) dz(6.89)

I 1 k21 "
l+b -f

0 f0

where

f = b In (p + - 1) . -

0

/1-+ %

Equation 6.89 can be written as ' i
""'. ',,

0 2 2

a
4

4

E a ca be written a (6.89a)

2 - 1 2 .

3 o 0 [1 (ax InJdx (6.90)

I -- __ ________

x-a x-a

The solution to eq 6.89a, when * 0, is

4 (paE__a)__ 1 3 3
4aT + In a [ ()oa -g + a43 - I + a 01+

0 0 0

a 2 2 3 0o 4 3 _
- E -~(-g )+ 2a In (i9 -- a in ( 2g (6.90)

where g = p + I.
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Equation 6.83 yields the same steady state solutions given by eq 6.78.

The quasi-steady solution was compared (Lunardini 1983) to the numeri-

cal cases of Gold et al. (1972), Lachenbruch (1970), and Hwang et al. 6

(1972), and found to be accurate to about 20%. Numerical quadrature of eq

6.89 was carried out and values are plotted in Figures 6.27-6.44 for prac- %

tical ranges of 0, e and u (Lunardini 1983).

These graphs are felt to be acceptable for engineering estimates if

accuracies on the order of 20% are acceptable. For insulated pipes, where

the phase change is expected to be more limited, the graphs should be more

accurate. For hot oil pipes the sensible heat can be considerably great-

er than the latent heat. This means that the Stefan number is quite large

and in order to account for the sensible heat, an effective latent heat is .. %

defined as

L/L = I + C21 T + ST/2 . (6.91)

The equations and graphs presented for the thawing case are all valid .

for the freezing problem if

k (T - T )t
T3 2L

rI L

and k, etc., refer to the frozen values.

k, 001
60- E0

Steady State Depths

50- IS 2322 ui20
20 262 7
4.0 374 2

40 0 660.5
20 10730

30 -

1 0 .,

-C

Figure 6.27. Phase change beneath a buried pipe,
k21= 0.01, = 0.
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Figure 6.44. Phase change beneath a buried pipe,
k210- 0.2, e = 0.

Solid

/ / R

r/
rr Figure 6.45. Inward solid- -

ification in a cylinder. ,

6.3 INWARD PHASE CHANGE

The problem of inward phase change from a cylindrical surface is

important in dealing with the freezing of water -in pipes and allied
N.

problems. A number of solutions are available for this problem in a finite

domain. %

6.3.1 Zero Superheat or Subcooling %

As expected when the initial temperature of the system is at the

fusion value the analysis is considerably simplified.

6.3.1.1 Constant Phase Change Rate

The solution to this problem, as given by Kreith and Romie (1955), is

similar to that discussed in Section 6.1.3.1. With reference to igure '"

6.45, the problem is expressed as

228
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I 3T I 3
r r - ) = - t (6.92)

rr ar catW

V

T(R,t) = Tf (6 .92a)

Rr d (6.92b)

r=R

- - =G = Q/k (6.9 2c) -

T(r ,O) = T .(6.92d)
of

The interface moves at a constant rate given by

R = r kGt (6.93)

The time to attain complete solidification is

pt r
0 (6.94)

tf kG "

6.3.1.2 Zero Sensible Heat

Zero sensible heat implies that the Stefan number is small. Our defi-

nition of ST means that the latent heat is very large. Once again the S

quasi-steady procedure will lead to simple and useful results. The quasi-

steady method always neglects the sensible heat. The problem may be de-

scribed as follows:

d dT 5
(r rr) = 0 (6.95).%

Tr =Rd ,r

T = Tf

k +T dR r=R

ar dr

T(r,0) = Tf -"c"
fS

T(ro,t) = T P T-p

Equation 6.95 is easily solved for the temperature which is given by

(T - T ) .

T = T +in r )
s In Rro 0 -0

r
0
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The solidification interface can easily be evaluated:

202 18 820 +1I 4T (6.96)

where -

8 R/r
o

Ot SS=- s
r 2 Tro

0

c (Tf -

TT
ST * , ..

The solidification time is
atf 1 0

2 S T Tf (6.97)
ro

6.3.1.3 Finite Sensible Heat

A solution for the constant surface temperature problem was given by

Riley et al. (1974), using a perturbation method valid for small values of

the Stefan number. The first two terms of the series for the solidifica- %

tion time gave good results. The relation is

T= - (1 + ST) . (6.98)

It is clear that this result will be close to that of eq 6.97 for small

values of the Stefan number.

,..3.1.4 Integral Method

An integral method can be used to examine this problem. The basic

equations are those of Section 6.3.1.1 with eq 6.92c replaced by

T(ro,t) = T . (6.99)
p

An equivalent form of eq 6.92b has been discussed previously and is

3T _ + k (T)2
+-- ( r - R . (6.100)at pit 3r

The integrated energy equation is arrived at by integrating eq 6.92 over

the solidified region and using eq 6.92b:

___ dR 3T(r t) 1 R T,
R-+r -+ r r-A dr ,
k dt Dra a at.r 

i
0
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A second equation is obtained by multiplying eq 6.92 by r3T/ar, integrating

and using eq 6.100 to obtain

PA R2 3T(Rt) + r2  aT(r 't) 2 2 f r2aT
-- at o 3r r t dr .r 0

A single parameter relation for the temperature was used

T-T r -r
p 0

T f-T r 0-Rf Tp o ... =

which then led to a closure time of %

Tf (2 + S (3 + ST) . (6.101)
f 4 T 9 -  •

This result was not too accurate and Poots (1962) used a two-parameter

relation

T-T r -r r -r r -r
p = 0 + 0o 0 )Tf T r 0 -R r 0 R r

f p o o o 0 ,

Unfortunately, the resulting equations for R and g had to be numerically

integrated but the closure time was much more accurate. N.
The results of these calculations are summarized in Table 6.1. Equa-

tion 6.98 is probably the best relation to use but the simple quasi-steady

Table 6.1 Complete solidification of a circular cylinder.

Tf/ST =tf/r2

Allen Asfar et

ST Eq Quasi- Riley Poots Beckett & Severn al. (1979)

6.102 steady (1974) (1962) (1971)t (1962)t Tao (1967)

0.01 25.125 25.00 25.25 ...... 25.200

0.05 5.125 5.00 5.25 3.47 5.30 N..--

0.1 2.625 2.50 2.75 1.81 2.69 -- 2.720

0.2 1.375 1.25 1.50 0.97 .. ,-

0.25 1.25 1.00 1.25 0.81 1.19 ....- ... .

0.50 0.625 0.500 0.75 ...... 0.642
0.641 0.515 0.39 0.64 0.40) -- 0.47 --

(0.52)* %

1.0 0.375 0.25 0.50 0.31 .... 0.379

2.0 0.25 0.125 0.375 ...... 0.239

3.0 0.208 0.083 0.333 - ..... 0.189

*Two parameter method. •
tNumerical solutions.
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analysis is surprisingly good. The average of eq 6.98 and 6.97 gives

f 1 + (6.102) =7I- 4S 8
0 T 8

and this relation is very good.

Asfar et al. (1979) used a perturbation method with strained

coordinates. Simple equations were presented for the closure time which

agreed quite well with the numerical results of Tao (1967).

6.3.2 Surface Heat Flux Specified

When the heat flux at the surface of the cylinder is specified,

approximate solutions have been given by Shamsundar and Sparrow (1974) for

two cases.

6.3.2.1 Constant Heat Flux

At the cylinder the heat flux is specified as

-k ar = Q " (6.103)

The basic equations are as given in 6.3.1.1. An approximate solution is

obtained by expanding the equations in a truncated series such that the

energy equation and interface boundary condition are satisfied exactly only

at the phase change interface. The method is from Megerlin (1968). The

phase change interface is given by

ST -- + 0) + - 82 - 1 - 4Smn]
2 (1( 2 [1 -

+ -h-S exp (1/(2 ST/ 2 ln - erf I (6.104)
4 T2S

where

S cQro/kL (a form of Stefan number)

c(Tf - T)
S - £ (the usual Stefan number)
TI

B - R r o • -

The solidification time is given by

S f I 2 I fc/!-ST + exp (--) e r fc •(6.105) .

T + ST 7s
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%.

The quasi-steady solution to this problem is .

Qr
T = Tf -- n (R) . (6.106)

f -k

The surface temperature is

T(r ,t) = T - 0rl

0f k~ln

The phase change interface moves as

ST = a - " (6.107)

The closure time is

STf
f 1 (6.108)ST  2

or
22

1 r 2 p o

t 0 = 0--
f 2S a 2Q

6.3.2.2 Convection at Surface

The second case involves convection at the surface into an ambient

fluid at Ta

aT-k - = h(T - Ta) r = ro (6.109)
ar a

In this case numerical evaluation is generally needed to find the location

of 8. However, for small specific heats (Stefan number) an approximation

for the closure time is given by the quasi-steady method (London and Seban

1944). The solidification interface is

2T 4 = 82 (1 8n 1 1 + (6.110)
21 1) 2 B

The solidification time is then

2 BI 1 211 1 i+ (6.111)

When the Biot number is very large the ambient temperature will be the same

as the surface temperature. Then

f 4

This is exactly the result of the simple quasi-steady procedure, eq 6.97,
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Table 6.2 Closure time for cylinders,
numerical solutions, zero superheat,
surface convection. 0

EDimensionless time T
Biot Stefan Gupta &

S1.0- -SI number number Kumar Tao Baxter
5 5 Bi  ST (1983) (1967) (1962)

": Quasi-steady-

1 1 1.044 1.045 1.00
2 1.240 1.243 1.18

2 1 0.737 0.736 0.70
Z C - 2 0.897 0.897 0.82

Convective Boundary Condition for Cylinder 10 1 0.467 0.463 0.42
2 0.583 0.580 0.52

0.1 1.0 10
Bi. Biot Number

Figure 6.46. Complete freeze of a circu-
lar cylinder.

for a constant surface temperature.

The temperature is

Inrin ( --) -.

r0
T(rt) = T + (T - Tp) p n (6.112)

The pipe surface temperature is e

B T ln
T - T(r ,t) - T - (6113)

p 0 f I - B in (6.-3

Figure 6.46 is a plot of the numerical evaluation of the approximate

solution for the closure time of Shamsundar and Sparrow (1974). The re- .0:0,

suits are in good agreement (less than 10% difference) with those of Good- S

ling and Khadar (1974) if the Stefan number is less than one. Above ST 0

1.0 the results are less accurate. Numerical solutions for the closure

time of cylinders have been evaluated for large Stefan and Biot numbers by

several investigators. The results are given in Table 6.2. -

6.2.3 Surface Convection and Radiation

Goodling and Khader (1974) numerically solved this problem with the

addition of radiation at the cylinder surface. Unfortunately their

calculations were such that only one value of the ambient to fusion
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temperature ratio was studied, which was not in the right range for water

solidification. One can estimate that if asesTf3 ro/k < 1/3 Bi2,

the solidification time with radiation will be at least 90% of the value

for convection only. This estimate will vary with the ratio of the ambient

to fusion, absolute temperatures.

Seeniraj and Bose (1982) used regular perturbation to obtain solutions

up to the first order for the single-phase problem. For zero radiation the

zeroth solution was exactly the quasi-steady solution of Section 6.3.2.1.

For (Tf - Ta) small, an analytic expression for the cylinder closure

time was found.

The convection/radiation boundary condition at ro reduces to the

convection case

B (rt) [(rt) -T k
ar op r opt a

0

= ( + + )() (6.114)

r

where

4o s Fr T
3

B =B + ss f f
r i k

ST << 1. 0 ;€

F = radiation shape factor (one for a small cylinder in a large

enclosure). 

For zero radiation eq 6.114 agrees reasonably well with the results of %

Gupta and Kumar (1983), if ST. < 0.5. It reduces to the constant

temperature perturbation solution of Riley et al. (1974), eq 6.98, when

Bi becomes infinite.

The quasi-steady approximation, for small (Tf- Ta), is

(Tf - T ) In(

T=T f f a (6.115) "S.,
In --T

r

The surface temperature is %. S
(T a  Tf in ._- k

T(r ,t) = Tf + (Ta - Tf In 0 (6.116)
0 In 0--

B %

235

A

-~ ~ ~~~4A LA .L A- -A.-.. J *Sd'~~'S ~



The phase change interface and closure time are

T 2 [in 1 I 1 2+B-I (6.117)B 2B
r r

T f "4+ - . (6.118) 0%_

6.3.3 Finite Superheat (Two-Phase Problems)

Very few analytical results are available for the inward

solidification of cylinders if the initial temperature is not at the fusion

value. Jiji and Weinbaum (1978) used a perturbation method to arrive at
1.

approximate solutions for annular regions. They considered the cases of an

insulated inner cylinder and an isothermal inner cylinder. For the

insulated case at small Stefan numbers, which was used as the perturbation

parameter, the complete solidification time of a tube was the same as that

of the quasi-steady solution. They concluded that the initial temperature

was not too significant for the insulated system; thus the zero sensible •

heat solutions presented in Section 6.3.1.2 should be reasonable at small

Stefan numbers. For isothermal systems the superheat is quite significant

even at small ST .

For the annular region, with radiation/convection at outer cylinder,

there are two cases to consider: a) inner cylinder insulated, b) inner

cylinder at constant temperature. The quasi-steady equations, referred to

Figure 6.47, are

d dTL .(r - 0
dr (6.119)

d T2",. "
d (r (6.120)
dr r ) = 0

Ta (R,t) - T2 (R,t) - Tf (6.121a) 2 Solid

aTL 1 iquid T, Ambient
TL(r t) - T or T- (rn,t) = 0 (6.121b) ,n (r) r

-3T 2 (ro't) Br R
3r = - (T2(r°t) - T] (6.121c)

3T,(R,t) 3T2(R,t) dRR )  k - - -PI (6.121d) Figure 6.47. Solidification of
r 2 ar dt annular region.
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0
where WIN.

4a Fr
B = Bi + s s 0
r i k2

F = radiation shape factor (probably 1)

T +T
T f 2
T = 2 "

I. Constant temperature inner surface

Rin (-) ": -

T T =T + - (6.122)
1 f In ( )

In
0

B (T -T ) in
T = Tf - r R (6.123)

(I + B in -o)

The interface radius is governed by %

Ta x dx B (6.124)

---A+ 1 B in x
in- r •

where x

R

T -T
0 f

=4 k12  (Tr T

r *n
r0

k (T -T )t
2 f

a PYZ r2 I.'
0

The solution to the interface energy equation is

a c B -a B
T - { [ (c -1) +g] +- [ (a + 1) -g]a b 2-,2." 2

n n
+ +~l. (cc - (-a) (6.125)
- n-1 n n! (615
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where
2(o + B in A)

4 r L1
a (4 + 1) Br  -

b = (4 + 1) Br

2[B In -+ * (B in 8 - ),
r A ~4r

(44 + 1) Br

(4 + B in A) (I - B In A)-%

d in A r r(4)4 + 1)2 Br $1..~4L r
(04- - 1)[1 - Br In A]

g= (4 + 1)

The cylinder will not freeze completely if To > Tf. The steady-

state location of the interface is

r= exp + + B - (6. 126)Boo= ep (I +4)4) Br'

r

The solution to the same problem with a constant outer cylinder temperature %

can be found by letting Br + c, in the above equations. The quasi-steady

solution to the constant temperature outer cylinder problem is the zeroth

order solution given by Jiji and Wienbaum (1978). The phase-change

interface is

T I C B ~)4+1npr +1 I2 na
a = 2()4 + 1) ( )[4 2

2  2 i 0) l ( +1 ln 
+  00 [[2 In $3/pln n -2 pn  "" '" .,n

p( 4 + 1) 1n8 i nA-2 i
n=l [[, -

1/( 4+1) (6.127)
where o - A

2. Insulated Inner Cylinder -.

The temperature in the solid region is identical to that for case (a)

whii the liquid temperature is simply I
T1 = Tf •'' ,

This is due to the quasi-steady assumption which cannot accommodate the

sensible heat of the liquid. The cylinder can freeze completely with
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T 92lnq 2 -+-(
a 2 1 1 1) . (6.128) .0

r

This is easily seen to be the single phase solution (Sec. 6.1.3.2) for Br -

+ w, or constant temperature outer cylinder. ".-

Sinha and Gupta (1982) considered outward freezing from the inner cyl-

inder. Limited experimental and numerical results are given for superheat-

ed water with an insulated outer cylinder. The results agree with single

phase quasi-steady solutions and heat balance integral approximations for

small superheat. The numerical solutions are very sensitive to superheat.

6.3.4 Freezing of Water in Pipes

The question of the freezing of water in pipes is of importance in 0

terms of water supply, sewage removal, etc. Figure 6.48 graphically des-

cribes the growth of ice in a tube. The density of water is at a maximum

at about 39°F, and as the water near the pipe surface cools to 39*F, the

cooler, denser water sinks as shown. As the temperature drops below 39*F, 0

the pattern is reversed, and the cooler, lighter water rises. A certain

amount of subcooling is necessary before nucleation of ice will occur.

Zarling (1978) and Gilpin (1977a) report values of 8 or 9*F of subcooling,

but this will vary from system to system. Nucleation will be followed by S

dendritic ice growth (see Section 6.1.1) and a rapid return of the water to

the fusion temperature, after which the usual annular growth will begin.

The effects of dendritic ice are usually ignored, but they may have signi-

ficance for pipe blockage, as will be seen. 0

The time required to cool water in a pipe from an arbitrary tempera-

ture to the fusion value can be easily estimated.

Cooling to Subcooling
Fusion Point _,Supercooling Annular Ice Growth of Ice -

Dendritic Ice Growth

4()

Nucleation of Ice

Figure 6.48. Cooling of water in pipes. p
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ki Insulation h

P TO

Figure 6.49. Ice growth
inside pipe.

6.3.4.1 Quasi-Steady Solutions

Consider an analysis where the water in the tube does not vary

spatially and the effects of the density maximum are neglected. For a unit

length of insulated pipe, with the notation of Figure 6.49, an energy

balance of the water yields

2(T - T ) dTw a -r2C - (6.129)

1 1 r 1 r 1 n w dt
- + - In -a - In - + -

r nh i k p r n k r 0 r ih 0

The solution to this equation is

T - (T -T )e-t/SL + T (6.130)w 0 a a %

where

2
r P rrSt n ww[i o in - 1 r-I]

2 k p r n k r 0 rrnhh i

The time for the water to cool to Tf is

T -T
t = I n ( Ta (6.131)

Consider the growth of an annular ice layer as shown in Figure 6.49. If '

the water temperature is Tf and the air temperature is Ta , then the

heat liberated by the ice formation must be transferred outward through the

layers of ice, pipe, and insulation. The quasi-steady equation is

(Tf Ta) + L R fi . (6.132) 5

r dt
r 0 ri
in in r- ro + I .

k k k r h-
f p o

The solution to this equation for the time required to form an ice layer of

thickness R is
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r 2 _ R2 2
L when n R2

tf f Ta) +S+  2 + R nr (6.133)
i p rn f r n

where
r + i 1 

,'

= -2
r L n [1 + sJ (6.134)

f k Ta) 2

Lock et al. (1970) presented the same solution, but neglected the

insulating effect of the ice and the pipe. N

(rn kf r kf r '_' f=()[+ i ln-- (6.135)

I.
where'

- .

kf (Tf - Ta )tf
f pt r i2

hoi

Bf k f %,'

Equation 6.135 is interesting since, for the special case of a thin-walled

pipe with no insulation, it reduces to

T. (6.136)f 2 [2 L

Note that this is exactly the theoretical result described by eq 6.111.

6.3.4.2 Dendritic Ice in Horizontal Pipes

Dendritic ice is that formed when supercooled water suddenly nucleates

and rapidly changes phase (see Section 6.1.1). The latent heat evolved

raises the surrounding water temperature back to the normal fusion

temperature where the dendritic ice is in the form of thin plate-like crys-

tals that can block the flow of water in a pipe even if only a smll part

of the water volume has changed to ice. This is due to the interlocking of

the plates, later further cemented in place by annular ice growth. The
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possibility of flow blockage depends upon the nucleation temperature, cool-

ing rate of water at the certer of the pipe, pipe density, and flow veloc- f
ity.

Typical nucleation temperatures of water are listed below:

Water source Nucleation temperature (0C) Reference

Cold tap -4 to -5 Gilpin (1977a)
Hot tap -5 to -6 Gilpin (1977a)
Fresh lake or river -3 to -5 Gilpin (1977b)

The nucleation temperature is independent of container material and cooling

rate for rates less than 1C/min. S

A well-insulated pipe will be most susceptible to dendritic blockage,

as the water center temperature can cool down to -2*C before the colder

surface water causes nucleation. If the center temperature is higher than

-2*C, at nucleation, the dendritic ice formed will tend to disappear be-

cause of convection effects at the dendritic growth location.

Gilpin (1977b) found that, with dendritic growth, a definite pressure

gradient was required to start the water in the pipe flowing. This rela-

tion is shown in Figure 6.50. If the cooling of the water is less than a

critical value, then dendritic blockage is possible. k

The critical cooling rate is given by
-2-T

-2 Tn 5/4
C(- D ) (6.137) 0

where

21-29, copper tubes (uniform wall temperature)
16.3-13.7, plastic pipes (uniform heat flux)

H - cooling rate of water temperature, 0C/min
c

D - pipe inside diameter (mm)

Tn = nucleation temperature (*C).

For most cases the plastic pipe relation will be most appropriate. If the

cooling rate Is less than the critical value, Figure 6.50 can be used to

find the ice volume fraction at blockage. Then the time for blockage to

occur is estimated as

tfd x it f (6.138) 5
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800

400 ,

0

0 0.5 [0
xi,Voiume Fraction of Ice

Figure 6.50. Pressure gradient
needed to start flow during freez-
ing history of a pipe (adapted
from Gilpin 1977b).

where tf is given by eq 6.134. These relations are only estimates, as

the dendritic ice relations are not sufficiently known, but it appears that

dendritic blockage may be significant. 9

The mean cooling rate for a pipe can be estimated from
(Tn - To)

H n T (6.139)

S ln (T 0_T a
n a

NOMENCLATURE--CHAPTER 6 .. %

a 2-1

A area

b I/ln(uj+a)

h r
B k0 Biot Number

i k'

Bf hr
kf 

, - L

Br Bi + 4s sFr° T3/k 2  - r

c specific heat

C pc, volumetric specific heat

d depth to center of arbitrary isotherm
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df depth to center of thaw bowl

d depth to center of buried pipe

00
D pipe diameter

D phase change depth beneath insulated pipe

o

Ej(x) exponential integral function

f solid fractions

f solid fraction of mushy zone at solidus front .
su

F radiation shape factor (1, for large enclosure)

G Q/k

h surface coefficient of convection

hiph value of h inside and outside pipe

Hc cooling rate of water

k thermal conductivity

k12  kj/k 2  %.N

ki thermal conductivity of insulation %

K hydraulic conductivity

I latent heat of solidification

L PI, volumetric latent heat

Le (I+C 2lST+ST/
2 )L, effective latent heat 0

m mass flux rate

q heat transfer rate at cylinder surface per unit length '''

q plane heat flux, non-melt
p

q c1  -,

q* 2lkjt dimensionless heat transfer ., .

q''' volumetric latent energy release
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Q surface heat flux

Qm energy added to thawing medium

Qs strength of source/sink 0

Q
Q* 4k (TT dimensionless source/sink

Jq dt
Q* 2-r---- , dimensionless total heat flow

t 2w r' p

r radial coordinate 0

rir r insulation, inner pipe, outer pipe, radii

rt  radius of arbitrary isotherm

R radius of phase change or thaw bowl .

RL radius of frozen mushy zone

R2  radius of mushy zone (liquid limit)

o a
R R/ri dimensionless radius of thaw bowl

0

Q r

S ci 0i

Cl r

ST~ (Tf -T)

Taa

S~o c ) tfnc~ (Tf T freeze Stfnnumber ~-(T Tf), thaw

To ~o0
k £ ., )

CL.

STa . - (Tf -T a )

t time

tof closure time for solidification
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w

tfd closure time for solidification with dendritic ice

T temperature

T air temperaturea

Tf fusion temperature

TG  mean annual ground surface

T T liquidus and solidus, fusion temperatures

T ,T , initial, pipe surface, insulation surface, temperatures0o p p
opp

T water nucleation temperaturen

T ambient temperature

T +T

2 •

u T- To

T -T
0T -T S

p 0 ,

x,y,z Cartesian coordinates

xf depth of Tf isotherm, non-melt, plane

xi  ice volume fraction

X,Y plane, phase-change depths

y phase-change depth beneath center of pipe
0S

w water concentration in soil system

a thermal diffusivity

a1 2  a~ /a2

a equivalent thermal diffusivity 4

0B R/ro dimensionless phase-change depth

x 0Y planar phase-change parameter
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Ye Euler's constant

"L R2 /2/a-'

6 thermal penetration depth .

6G  mass flux parameter

A (6 -ro)/r o

AT T - Ts

C kli in (rl/ro ) insulation parameter

s surface emmissivitys S

x/ri

r2 (4a i t)

integrated temperature •

(T - Tf) k

Q ro

R/2/ at phase-change parameter

X1  RI/2/a~t

11 do/r i

d / r

0 /0 0-K

y/i

y / r o' " -

0 0 i
"K. "'-,

p density

a Stefan-Boltzmann constant

a t ST

T r 2  
"'

0 0

247

%RR.

' ~ ~ ~ ~ ~ ~ ~ ~ O 41'~.~..;c&~- . K



I. -= t

r

Qt t

k (T - Tf)t
Tr 2 L

ie

asfT- T O

T 2/T

2 f

0

T -T )0

Tf T f - f2 f

T2 T0 f

T0 - T f

T -T
p 0

03 AT
k12 (T 0 Tf)

1 
4

p f o C

W frequency of surface temperature

Subscripts 
.

Te -T

1,2,3 different phases

f t frozen , thawed ,-''
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insulation

m soil system %

o location on phase change interface

w water
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CHAPTER 7. PROBLEMS IN SPHERICAL GEOMETRY

The techniques associated with spherical systems follow closely those

of cylindrical coordinates. Once again, no complete, practical solutions -

are available.

The energy equation (see Nomenclature at end of chapter), in spherical

coordinates, is

1 a 2 aT I DT
2 - (r Z -) = - T (7.1)

a 2T +2_ aT I aT

r r ar a at

The familiar trasformation variable

will transform eq 
7.1 to

d2T 2 _T dT
ar + 2(a + 0

dn nd-

Direct integration leads to varabe

w t o 7.1 eto dn

Further integration by parts yields
2T-T=_ f 2 e/ dn -

T - Too = B e 2erfc nj

A formal solution of the energy equation in spherical coordinates is

T - T A F(n)
L% 1

where the spherical function is

F(n) = e - - erfc n.

r

2Va
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The function F(x) can be expanded as

002n 1~

F(x) = (-)n x (1 + ) - :7
2n! x 2n+1 2

For large values of x, an asymptotic expansion is

2 0 n+l 3.(2n+1)
F(x) = -e (-1) n+2 2n+

n=o2n+2x 2n+3

A boundary condition at a finite radius ro will preclude the use of

this similarity solution. Thus exact solutions are restricted to point

sources at the origin or problems with no boundary conditions prescribed at

ro. •

7.1 OUTWARD PHASE CHANGE
7.1.1 Continuous Point Source at Origin (Freeze)-

We will now consider the continuous extraction of energy at the

origin. The equations for the frozen and thawed regions are

- L-(r (7.3)
r ar ar a, at

1 a 2 27 -r ( r 2  - - 2 @ (7.4) % .,
a r r a2 at

T2 (r,o) = T (7 .5a)
o%

lim T2 (r,t) = T (7.5b)
0

TI(R,t) = T2 (R,t) = Tf (7.5c)

urn 2aT 1

--(47tkr 2 ) = Qs(t) (7.5d)
r~o

aT,(R,t) 3T 2 (R,t) dR
-k1 ar + k 2  ar =p dt (7.5e)

The solutions are

T =T + [F(n - F(X)] (7.6)
I f 41tk 1 1 [r 1 )
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T~ ~ T-T~ n7

T2-T F (XV' 012)Fn)

R =2 XV'czt (7.8)

where

2 -

F(n) -e -erfc n~

The above equations are valid only if energy is extracted at an increasing

rate given by

Q (t) Q QVt .(7.9)

The equation for X is

Q e k21 c 2  1  2
____________= __ _ _ __ _ (7.10)

4wk Iai (T -Tf F(X/c*a) To

where .

STo (To Tf

This problem had limited practical use because of the transient nature 3f

the sink term.

7.1.2 Freeze of a Subcooled Liquid

An exact solution has been found for the problem with a solid region

for r < R and a subcooled liquid for r > R, as shown in Figure 7.1 (Frank

1950).

The equations are

1 a 2 DT 1~
-p-(r -) -- (7.11) * ,.

r 'ar 'ar a at

Figure 7.1. Freezing of a sub-
cooled liquid in spherical

R r geometry.
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T(R,t) = T (7.1la)
f

im T(r,t) = T (7.lib) .
0 %~ 9

T(r,o) = T (7 .11c)

k DT(Rt) _ dR (7. ld)

The solution follows directly and is V.

T T + (T - T) F(%n (7.12) .."..
o f o F(X) i

R = 2)V-t (7.13)

X2 e [eX 2 - l X erfc X] = To (7.14)
2

7.1.3 Zero Superheat

7.1.3.1 Constant Temperature Boundary Condition

The quasi-steady approximation will yield a simple solution. The - ..

freeze problem will be given following the notation of Figure 7.2:
d 2dT =
d (r 2 dr ) = 0 (7.15)

T(r ,t) = T
0 S

T(R,t) = Tf

dR = k 3T(Rt)
dt P.X dr .9• -'

The solution for the temperature is .

r r% -, .-.

T-T I Frozen Towed
s r r (7.16) R

Tf T r I
R 1 R

The phase change interface is given by

1 3 82 1 (7.17) ,
2 +6

Figure 7.2. Phase change 0

for spherical systems.
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where

4= 8 R/ro

" = r---S

r T 0
0

ST -T-(Tf Ts ) .

The heat transfer into the sphere, at the surface, is

q* 4 (Tf ' T kr - (7.18)

These relations are, as usual, for negligible sensible heat, or ST + 0.

Pedroso and Domoto (1973) used a perturbation method to obtain a

solution valid for small Stefan numbers. The problem is 6

1 a2 (rT) = 1 9T
r 3r2  a at

T(r ,t) = T .

T(R,t) = Tf

dR - k aT(R,t) 0

dt =9 T r

The temperature and the phase interface velocity were expanded in a Taylor

series, about ST = 0: -

u = u + u S + u S 2+
o IT 2ST

9 g 9g + g 1
5  + + .

where

T-T

T - Ts

J dO
g dT

The zeroth-order solution is exactly the quasi-steady solution just dis- '-

cussed. The first three terms yield ',.

u I. r 2 2ST 1 - r2 4-21 r4-T Us4 (
u 6 t  _ _ L 0 u I_ )4 Su u]} (

u6 R 0 28 3 120 R 0 B 2

(7.20)
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S2

_ 1 (7.21)go 3 8 45 83 j

where

r
r 0

u ff -- 9g f0 1oo 1 8(8-1)

Equation 7.21 can be integrated to give the phase change position:

= 3(8-1)2 + 2(8-1) (-1)2 1 (8-1)2 (7.22)
T+S - S (.2

ST2 6 T 45 a T

The first term of this series is the quasi-steady solution, eq 7.3.

7.1.3.2 Convection at Surface of Sphere

The geometry for the phase change is shown in Figure 7.3. The con-

stant temperature at ro is replaced by •

kT (rht) h[T(r ,t) - T .,

The temperature of the frozen shell is

r ro

T - T B (I - A) + I .01 r iTr
T -T r R -

Bi( - 09) +1 =..-. *

where Bi = h ro/k is the Biot number. Fgr 7 P c

The motion of the interface is given by outside sphere with con- "e,0

As the inside surface coefficient increasess

(Bi + ), this case will reduce to the con-.

stant temperature problem. Frozen\
,/' ..,

7.1.4 Finite Superheating

Gupta (1973) used the quasi-steady meth- 
R

od of Khakimov (1957)--see Chapter 6--to in-

clude the effects of the surrounding medium
Figure 7.4. Tempera-

at temperatures other than the fusion value ture penetration for
(see Fig. 7.4) freeze outside a sphere. 0
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The equations are

d 2 dr 7.3
r (r -1 0 (7.23)

for each region:

Tl(rot) = Ts

TI(R,t) = T2(R,t) =Tf

T2 (6,t) = T
2 0

The temperatures are

r
T -T 0
I s r

T - T r°f s o

T 2 1--
R

6
T - T 0 1-T T2 0 r

T T 1 ARI6fo

The heat extracted at the surface of the sphere, in a small time, must

equal the change in the latent and sensible heats of the surrounding

medium. The phase-change interface position is then

83 82 2 nS

= 83 2 + a + -) + ST (82-a-In0) (7.24)

where i = 6/R 0

T -Tf

Tf -Ts P

A value of Q = 4.5 was suggested by Khakimov (1957). The surface heat

transfer is again given by eq 7.18.

Equation 7.24 reduces to the zero superheat solution when ST = =

0. Equations 7.24 and 7.22 are quite close for small values of ST• As

the Stefan number increases, eq 7.22 increasingly differs from eq 7.24, at

values of 8 less than 10. Since eq 7.24 is not limited to small values of

ST, it should be more accurate at large Stefan numbers. .. :
aST

The method of Lin (1971, see Section 6.1.4.3), can also be used. This

will give a solution for the phase change interface as follows: 0
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3 2 2  %
B B+1 2y3 2 +6 ST (7.25) %

The parameter y is given by the exact solution to the Neumann problem. .

This will be acceptable for small superheat parameters 0, and small values

of T but should be used with caution.

7.1.5 Constant Surface Heat Flux L

The case of a constant surface heat flux has been numerically examined

by Goodling and Khadar (1975). The equations are as given in Section

6.1.4.5 except that the diffusion equation is

2aay_ + _2e S 1

ay2  y ay 3

where

(T - Tf )k r
y6-

Q r r
0 0

croI

Tj Q t S, =f Q cr,0
PX ro k00

h o (Tf - T ) a

P a 0
Q r 0

Very limited ranges of the parameters are given, as noted in Section

6.1.4.5.

An integral solution for the phase change interface is

T= 2dB . (7.26)

1 I2 4 1/2 1
(Bi)-1' ,e .

The time to reach a given solidification location with eq 7.26 is about .. .-. '

10-30% greater than the numerical solution of Goodling and Khadar (1975), 0

with S, M 10, a = 0.25, and p = 0.6. For lesser values of S, the agreement

is much better.
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7.2 SPHERICAL PROBLEMS, INWARD GROWTH

Several approximate solutions are available for the inward

solidification of spheres. No solution exists for problems with finite

superheat.

7.2.1 Constant Interface Temperature Gradient

Kreith and Romie (1955) have examined the linear problem of a constant

temperature gradient applied at the interface location: •

I a. (r2 aT) = 1 aT (7.27)
r ar ar a tt

T(R) = Tf
fS

3T = dR
4r + P T-

r = R (7.27a)

-T G Q 0

ar k

T(ro,0) =T . (7.27b)

The solution for the interface position is given by

G T%
8=1- (Tf - Ts) (7.28)

The closure time occurs when 8 = 0; therefore \j

(Tf- T )
f s (7.29)

f G

This relation for the closure time is not exact, as a solution for the sur-

face temperature showed that, at 8 m 0.1, the surface temperature will ex-

ceed Tf if G is a constant. Thus, realistically, when Ts reaches a

value of Tf, it will be held constant and closure will occur with a vari-

able temperature gradient, if surface melting is to be avoided. Solutions

for the transient surface temperature are given in the next section. 0

7.2.2 Prescribed Phase Change Interface Velocity %

Rubinsky and Shitzer (1978) solved an inverse Stefan problem to obtain

the temperature as a function of the interface velocity and heat flux. The

temperature in the changed phase (see Fig. 7.5) is
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Chonged Phase Unchanged Phase

RSr"o
Figure 7.5. Phase change with pre-
scribed interface velocity.4'

1 ®(r - R) n %

T (r,t) f Tf + n an(R) n (7.29a)

a ffi 0-
no

a =0

0 T(R~t)

a 1 = R(t) - r 

4jfr

dR 1 dan 2
a n- 1 ) .'.n dt -a n-1 -n'

The interface heat flux is given by the usual energy balance ,.

9T(Rt) dRkl r - QI = p2 (7.29b)•

1 9r i dt

where d,

'T2 (R,t) €¢'Qi f k2 3r is one possible heat flux. ,

It is assumed that dR/dt = V and Qi are prescribed at the interface. . .

An exact solution can be found if Qi = 0 and dR/dt = V = constant.

After manipulation eq 7.29a becomes

T(r,t) =Tf +k-a [0( e )R(t) + - u)(1 + e )
- 41] (7.29c)

where

p --V (r - R(t)] .

This is the solution given by Kreith and Romie (1955) in Scction 7.2.1. ,.MW%.

7.2.3 Constant Surface Temperature

A quasi-steady solution can be obtained for this case. Referring to %

Figure 7.6, the equations are
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Frozen

R T, T
Sat ura ted
Liquid

Figure 7.6. Freeze of
a sphere with constant
surface temperature.

d 2dT
r(r -) 0 

Boundary conditions, eq 7.27a,b apply. The temperature is given by

T -T -(ro-R) r 0s 0 1

T -T R r r

The interface position is

3 2
T + 1 (7.30)

3 2

This yields a closure time of

Tf =- . (7.31)

Pedroso and Domoto (1973) used a perturbation solution to obtain the

following relation for the phase change interface:

ST 3-STK 3+(3-sT )K 3-ST 2 1-83
S- [ 3 +( 3 -ST)KI[1- 8 -( 3K )ln 3+(3AST)K] + 0-( -8) (7.32)

where K is a function of ST , given below.

K 14.96 9.099 6.699 5.350 4.474 3.854 3.391 3.030 2.791 2.503 1.351 .9287 "- *'

ST 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3

Thus the closure time is

ST 3-STK 3+(3-ST)K 3-ST 1
T 9K [ 3 +( 3 -ST)K][- (-3K )ln 3 STK ]+ T 1 (7.33)

This relation was shown to be accurate for ST < 1.0.
.4 ]
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Table 7.1 Closure time for constant surface temperature spheres in- J r

itially at freezing temperatures.

Closure time Tf

Numerical

solution, Quasi-steady
T (Tao 1967) (eq 7.31) (eq 7.33) (eq 7.34) (eq 7.35)

0 -- 0.1667 0.1667 0.1667 0.0833
0.1 0.192 0.1667 0.1805 0.1791 0.0924
0.3 -- 0.1667 0.2168 0.1948 0.1104 •
0.5 0.237 0.1667 0.2302 0.2030 0.1285
0.8 -- 0.1667 0.2663 0.2048 0.1556
1 0.284 0.1667 0.2901 0.2004 0.1736
2 0.360 0.1667 0.408 0.1239 0.2639

Riley et al. (1974) also used a perturbation method to give a closure

solution of

Tf ="+ S T + O(ST (7.34)

This relation is also valid at small Stefan numbers but is less ON.

accurate than eq 7.33 at ST > 0.5.

The heat balance integral technique was used by Poots (1962). This -

method, following Goodman (1958), did not give accurate results for the ',.

closure time, which was

1 2 1
Tf = -T(S+2) - (ST+3) + -6 (ST + 4.0) . (7.35)

A two-parameter method led to much better results but required numerical

evaluation, which tends to lessen the value of the heat balance integral

method. • 
N

The results for the closure time of spheres are shown in Table 7.1. -

Equation 7.33 clearly gives superior results.

7.2.4 Surface Convection, Quasi-Steady . %

London and Seban (1943) used the quasi-steady method to solve the case

of solidification of a spherical mass of fluid initially at the fusion -

temperature. Convection into the ambient occurs at the outer boundary, as

shown by Figure 7.7.

The temperature is S
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R

Figure 7.7. Freeze of
a spherical mass with %

surface convection.

r o

T-T B (--- 1) + 1
Tf____- i r . (7.36) -

T f-To r
f (-o - 1)+I

Bi R~.

The interface position is

aT 11 T- 
1 2

- = = = - - a)( - 8) + - (1 - ) . (7.37) ".
r 3 B 2

As the surface coefficient h becomes very large (Bi + ce) the surface

temperature approaches the value of the ambient. The above equations then

reduce to those of SecLion 7.2.3, the constant temperature solution.

The closure time is

1 +1
Tf 3B 6

Hill and Kucera (1983) immobilized the moving boundary and used a series

solution. The closure time is S

3,.

1 1 3  42 Bf + S -2B +- B

B%2 2 3 8 2%
S (32 B 94B + 77) S -7 B 11)
ST -5 13 B1 - T  15B " -

29 3 4
-- B S ,:

15 1 T

This solution is only valid for small values of Bi ; for ST = 0.5, Bi

< 1.2. Clearly as B1 + - the result becomes infinite.

The closure time was also shown to bp -

B (+Bi <rf< 6- (I1 + )I+ ST )•

1262%
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This inequality can be used when Bi > 1.0. This relation reduces to the 0.

constant temperature solution of Seeniraj and Bose (1982), for Bi +

(see next section).

7.2.5 Convection and Radiation Boundary Condition

Goodling and Khadar (1974) numerically evaluated the freezing of a

sphere with convection and radiation at the surface of the sphere. The nu-

merical results were too limited to reproduce but, if ase Tf 3/kro<

Bi2 /3, the solidification time with radiation will exceed 90% of the time

with convection only. Thus for soil systems, or atmospheric conditions, it

can be anticipated that surface radiation will not be significant.

Seeniraj and Bose (1982) presented a perturbation solution for small

(Tf - T..) and zero superheat. The closure time is, to the first order,

given as

-T- _-- B2+__B (7.38) 

f 6 3B 6(1- B ) 2  r B (

r r r

where

4 a c (Tf - T.)

B B + F r T S -
r i k o f TQ X

a S t

F = radiation shape factor = 2

0

The relation clearly breaks down at Br = I which has no physical 0

significance. The result is valid only for ST- < 03. As Br increases

above 0.5, eq 7.38 tends to significantly overestimate the closure time.

If radiation is absent and h + - (Bi + co) then

f (1 + S T-

This is identical to the first two terms of the perturbation solution (eq ...

7.34) of Riley et al. (1974), eq 7.34. "-:.-

For no radiation, the zeroth-order perturbation solution is exactly

the quasi-steady solution of London and Seban (1943). The solution of Hill :1.,

and Kucera (1983) is also valid here if Br = Bi. The quasi-steady

solution for this problem is . 4

.-. %v,
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r
T -To I + Br r - 1)

Tf - T =  r(7.39) "

r R
1 1 1 r.
r B- -I( 0+ I I2 )  (7.40).'

T= - - ')1- )+ 1" 2
3 B 2 (.0

T +

f 3B 6 (7.41)

The quasi-steady closure time clearly is the zeroth term of the

perturbation solution.

NOMENCLATURE - CHAPTER 7 41

hr
B o, Blot number

B Bi + -k-F r f

c specific heat

C Pc -volumetric specific heat .

F radiation shape factor

F(n) spherical function

d-

g dT %

G Q/k

h surface coefficient of convection

k thermal conductivity

k12  k1 /k2

latent heat of solidification

q heat transfer rate from sphere surface

q*q
4nkr (T f - T )

Q prescribed surface heat flux
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prescribed heat flux at phase interface . .:
-i r

Qo source coefficient

source or sink energy rate

r radial coordinate

r radius of sphereo

R phase change interface radius

clST -(T -T)T Y f s

ClS - (T - T )

c1
S TF (Tf -Too)

Qc r
Si 0

k X,

t time

tf closure time for sphere

T temperature

Tf To,T fusion, initial, surface temperatures •

T ambient temperature

T'', T % ,,

T -TU Tf -Ts S
f 5

X planar phase change depth" _

y r/ro  %..

a thermal diffusivity -

8 R/ro

Y X Neumann phase change parameter
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A" Nr,

thermal penetration radius

surface emmissivity

Y1 r/ ( 2Va-t) 0
i0

(T - T ) k

r Q
0

R/(2V(cit) phase change depth parameter

p density

G Stefan-Boltzmann constant 0

SV
V [r - R(t)]

Ot t ST  •

T dimensionless time
r2

0

Ti Qt %
p tr 0, ,

Tf dimensionless closure time

T -T
o f
T f-TTf -5

S2 6/R,-.,.'

.-

. A

.'.4-
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APPENDIX A. QUASI-STATIC APPROXIMATIONS AND PERTURBATION METHODS

Problems of freezing and thawing arise frequently in such diverse ap-

plications as thermal design in permafrost regions, thermal storage of la-

tent heat for solar systems, and the heat treatment of metals. One is

often interested in the penetration rate of the phase change interface, the

temperature field, and the boundary heat transfer rates. From an engineer-

ing design viewpoint, exact solutions are sought for geometries and boun-

dary conditions that are simple and yet representative of significant sys- .r

tems. Unfortunately the mathematical difficulties are such that exact so-

lutions to this class of probl#vns are limited to a few very special geome-

tries and boundary conditions (Lunardini 1981). The differential equations

or the boundary conditions for these moving value problems are inherently

nonlinear and thus solution methods are rare.

The Neumann problem has shown that error functions can lead to an ex-

act solution, suitable for certain boundary conditions. However, the meth-

od cannot be applied in general. Such a similarity solution requires that

the differential equation and all of the initial and boundary conditions be

expressed with a single independent variable. Similarity solutions will

not exist for finite domains, two phases present initially, nonuniform ini-

tial temperatures, and boundary temperatures which are arbitrary functions

of time. Thus, there are very few other exact solutions. This has prompt-

ed considerable interest in approximate methods that can yield solutions

acceptable for engineering design. Aside from the usual numerical proce-

dures, several analytical methods have been of great value, including the

quasi-static approximation, the heat balance integral method, and varia- 0

tional methods. .4
If the phase change interface moves relatively slowly, then an assump-

tion can be made that the moving interface will not exert a major influence

upon the temperature field during short time periods. Two approximations

have been used.

The quasi-stationary assumption neglects any convection in the diffu-

sion equation and neglects the moving interface in evaluating the tempera- .

ture field and consequently the diffusive flux anywhere in the volume of

interest. The assumption can handle initial conditions but is not general-
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ly valid for all times if the temperature ahead of the interface is not

uniform or is changing because of the interface motion. The problem reduces

to one of transient conduction with no phase change. The actual phase

change is then solved through the interface boundary condition.

The quasi-steady approximation further simplifies the quasi-stationary

problem by dropping the transient term in the energy equation. The justi-

fication for the method is somewhat tenuous since it cannot satisfy the

initial conditions; however, the problem is mathematically so simple that

the quasi-steady approximation has been used more than the quasi-stationary

method.

QUASI-STATIONARY APPROXIMATION

The melting system will be examined again, for a Neumann problem with

variable density, in order to illustrate the quasi-stationary idea (see

Fig. Al). The exact solution to this problem is discussed in Section

2.1.1. Neglect the temperature variations in the solid region and examine .

only the liquid equations. This is done so that a convection term can be

maintained since in the solid region there is no convective term. The

energy equation for the liquid region has been derived earlier. The

equations for the melting system (see Nomenclature at end of appendix) are

as follows:

S102 dX AT (AI) !I2T 1 T + (1 - -) - (lx2  E (Al)

T(x,O) = To
= T Liquid Solid

Ti(X,t) -Tf T, N-

T(O,t) = Ts

Solid Surface -- -
at t=O

-k AT(X,t) = dX T I  
k%

dx t - *'.mS

X(O) = X0 • .
To,-------- -

Here 2/o is the ratio of ,N Z

the solid to liquid phase densities. ,

We can introduce the following x=O Liquid Surface at t>0

nondimensionalizing variables:
Figure Al. Geometry for melting system 0
with variable density.
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T-T Tf-T O  T -T 08- 0 0 _=__ =s

x 0 Ts-Tf Ts-T f T s-T

X at ST (T O= 2 T (Ts-Tf)
0 X.6

0

The dimensionless time T, uses a characteristic time X 2o/a. This is

the diffusion time for the liquid region and is a measure of how long it

takes the interface to move a distance X0 . The time domain will be rela-

tively short, in T, if X < X0 .

The equations are

a28 8 + 0 p2/P) dE 88 (A2a)

x2  + ( -- 1) S (2- (A2b)

IS

e(x,,O) = 0

e(0,T) =S

(,() ( r_ W.
d= _ST  8 S

dT T (A3)

E(O) = 1

The quasi-stationary approximation, which tends to be valid if ST << 1,

is

a2e ae
32 = 3 (A4)

6(x1,0) = 0

8(0,T) = OS

e(,T) =

After solving eq 4, the interface location is evaluated with eq 3. Because

of the limitations already mentioned, the method is best suited to single

phase problems.

Duda and Vrentas (1969a) showed that the quasi-stationary solution is

the first term of an asymptotic series. If the temperature and interface I
position are expanded as follows, with the Stefan number as the perturba-

tion parameter,

285I

f It



e -e + STe + S2  2 + Ss e +• (A5)
o T I T2 T

1 + C 2  
+  S Es +  (A6)

T  T &2 S ST  0

The temperature relations at the interface position can be expanded by

Taylor series, about the initial interface location, o(0) - 1.0:

(LL (= ( ,+ S & + SS &S + . ) (A7)
axi  axi  ax i  T T T

12 2 3 P" 6%(8 ).
( = (1,T) + (.)1 (STt + S &2 + ST &2 +- (A8)O

Let £ (P2 /P - l)ST . The constant C will be of order ST2 if P2 /p

1.0.4
The procedure is called a surface-volume perturbation since the dif-

ferential equation and the boundary conditions both contain nonlineari-

ties. Van Dyke (1964) and Cole (1968) provide further details on regular

perturbation methods. Applying eq A5-8 to eq A2 leads to the following

system of equations up to order 2:

a 20 ae
0 0

(A.9)

eo(x1,0) = 0

0o(O,T) =
800l,T) = -v

dE ae
0' - 5T 0)- (Al~a)

el(X,O) = 1 (0,) = 0,

o8 (l,T) = -: -) .
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0

dti
d -&1 (0) - 0

82 e 2  3e 2  P2 Be°ae
- = - + (_- 1)/S 0 (A)2

ax 2  aT p T ax 1  axI

e2 (X1 ,0) - e2 (,) - 0 %

e 2 (1,T) - 2 ( )i- El (- 1 )
2e3

-- - -1 ax 1

E2(0) = 0

It is clear that the zeroth-order solution, eq A9, is essentially the .

quasi-stationary approximation, as defined earlier. Equations IOa,b are

used only if the zeroth solution is calculated alone.

A regular perturbation (volume) can also be used if the nonlineari-

ties are concentrated in the differential equation. This can be

done by immobilizing the interface with 
- = _ X

Equation A2b is then S

+ + 236 (A13)
an2  2 d an 3 an an n -I

e(n,O) = 0

e(0,T) OS

e(1,T)

(0) 1

dE ST
__ _ ae)

T 30 %""^ "
E2 I -- 2S T  36 (I,T')dT' yw,%

TT
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A regular perturbation will yield a set of equations equivalent to eq

A9-12.

Since the quasi-ptationary method involves the solution of a transient

conduction problem, the result will often be in the form of an infinite

series solution. The method reduces the phase change problem to one of

transient heat conduction with no phase change. Analytic solutions of

transient conduction problems can be quite difficult in their own right.

QUASI-STEADY APPROXMATION.

The quasi-stationary method can be further simplified if the unsteady

terms in the diffusion equation are also neglected. To accomplish this a

new characteristic time will be used. S

Let

.i a 5 T " (A14)

x
00

The new characteristic time is now larger than the diffusion time Xo 2/a,

if ST < 1.0. The new time domain is ideally suited to long time movement

of the interface when the initial conditions have become less significant.

Jiji and Weinbaum (1978) used two time domains, the quasi-stationary for

initial growth and eq 14 for later growth. The two times were joined at a

suitable intermediate time. In this way a two-phase problem could be

handled.

The nondimensional equations are

= S e (A15)

a T aT, dT1 ax1  -4

e(x1,o) = 0

e(O,T1 ) = Os

E(, ) = e .

It is now obvious that for small Stefan numbers the diffusion equation

reduces to

a26
7T 0(A16)
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Thus, no transient term need be considered and the solution is extremely 'k

simple. Solutions are far easier to obtain, compared to the

quasi-stationary equations, but the utility of the solution is limited

since the initial conditions cannot be met and the sensible heat is not .

accounted for. Nevertheless, this concept is very widely used for freezing

and thawing problems.

The quasi-steady method can also be examined from the viewpoint of

perturbation solutions. The following series expansions are used:

2

= eo + s T 6 + ST 82 + . (A17) '

o ST2 2  + . . . (A18)

Conditions at the phase change interface can be evaluated using the

following Taylor formulae:

(361 aoi a2e 2
(_) = (-) + ) i  (S i + $  + E 2 "

ax 1 E axi E ax1 E-) T T

+ ( axi) (S TE + S 2 2 + ... )2 + ... (A19)ax T T

2A

00

a26

+ (2 (S T E 2 + -) 2 +  " (A20) ") '

ei T f ei(oT +(T Si+S .

0

The following systems of equations are generated:

a o (A21)

ax1

e (o,-T,) = 0s +0 0

dEOTe
0

E(ot) I
( , , = 1 ,-':

o o

d~o o.. ...
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61 0
2 "" (A22) ,

61(0,Tl) =0 ° 'i

° )=

a o o0 P[,"" ,

E,\o) 0

a2d2 T31  E 1 36 a x ae

0+ T (-0 ) ( ) (A23)

axi a T SxT a o

(2(0,Tl" )  = 0 
.-....

a2e 2201 202,51 0 0)

d2ax 2 2e1  36

E2 (0) ( 0

The zeroth solution is the quasi-steady approximation. Pedroso and Domoto

(1973a) demonstrated this for a spherical system. Lock (1969) derived the

zeroth and first order systems shown here for the solidification of the

semi-infinite medium. Duda and Vrentas (1969a,b) discussed the usefulness

of perturbation methods for phase change problems. Pedroso and Domoto

(1973a,b,c) noted the difficulty of using perturbation methods for inward,

spherical, solidifcation. Jiji (1970) used perturbation for curvilinear

solidification.

The quasi-steady method is so simple that solutions for the above

system can be written down:
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K .. ...- -,- -

Mini

e -- + es '

0

I + 2 Tr.

0 6 64

0 0 0
1 5 -; -'2

2 dx1 + cx 2 + axi + bx1
5  ,

~Id -E 1 - +2 I I 1) (.__ )do a (- o T 0

o 6 2E 3
0

to 40 "1

c 2 ,

T I

(± + ) + . . .. n.)..-s.'.

PERTURBATION WITH TIME VARIABLE REPLACEMENT

Huang and Shih (1975) introduced a useful concept for perturbation -

methods. Consider the usual nondimensional equations for a planar system:

32e (xx,'r*). 38 (xx,'*) (.A.2-4.
a ,T 3}TL  .-...

e(x1 ,O) 0 (A24a)

e(O,T*) = (A24b)

d_ ,( , ) (A24c ) e.- zo

d& - (A24d)
dT* ax % 

%
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Replace the time variable T* by r(T*), the phase change interface posi-

tion. This transformation is acceptable if r is a monotonic function of

T*, a common relation for many practical problems. Thus, the energy equa-

tion is S

2
6 (x1,'0

2= S g ' (A25)
T 3

and

g(r*) =d (A26)dT* "( 2 ) '..

Now expand the temperature and the rate of change of the phase change ,J 5-

interface as asymptotic series with the Stefan number as the parameter:

U(x I P) = U + UIST + U ST2 ++ ... (A27)

g(r*) = g + g S  + g2 S  + + ... (A28)
0 1

These expansions allow many problems to be solved in a particularly simple

fashion (Seeniraj and Bose 1982, Huang and Shih 1975).

Once the coefficients gi have been found, the interface relation can

be expressed as

T + T S +TS 2 + TS + (A29)
1 0 1iT 2 T 3 T

where

F ds.
0 0 go0 ( s )

g 1
1

=-r -~gg -2g +-)dS

T - g 2Idd"sL

2g 22 0 go 2  go 22,

T - r (ggI2 + -i) dS .
3 0 o ( g 3 -2gl2 go

If the rate and range of convergence of eq A24 is slow or if eq A29

diverges, its performance can be improved using the non-linear

transformations of Shanks (1955). •
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An advantage of this procedure is that it is no longer necessary to
expand the unknown functions about F when considering the conditions at

the phase change interface. This greatly simplifies the formulation of the
equations but the solutions are not necessarily simpler.

The Stefan Problem

It is of interest to return to the solution of Section 2.1.3 for the I

case of a constant surface temperature. The solution was based on the

assumption that, ST = cl(Tf - Ts/, is small which is equivalent to

the quasi-steady approximation. The quasi-steady problem reduces to

x2

=i (A30)

T1 (O,t) = Ts

T1 (X,t) = Tf

3T1 (Xt) dX •

k,- ---- = d--

The solution to this system is

Ti (T f - T) - + T (A31)
s!

X (Tf - Ts)t . (A32)

The phase change depth X given by eq 32 is identical to that of Section 0

2.1.3. Thus, Stefan (1891), in effect, seems to have been the first to use

the quasi-steady method.

The results are also valid if the surface temperature is a function of

time. Then %

T1  [Tf - Ts(t)] X + T (t) (A33)

k, tj

X r [Tf - Ts(t')]dt' (A34)

~0
A major limitation of the quasi-steady approximation is the failure to .

account for the sensible heat during the phase change. The heat flow from

the surface of the semi-infinite medium is given by S
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q - k1 A (---) xO-

Using eq 31 this is

(Tf - T)q k,- A x XN
The total heat flow, at the surface, during a given time is

t

Qp = r q dt
0

This can be evaluated using eq 32 as

A - T t dt'

k1~ ~ (T ) r [k Tf -T

or

Qp=-AXL A

The total surface energy flow, during the time that a layer of

thickness X freezes, is simply the latent heat. Thus, the method does not %

take into account any sensible heat although the temperature of the frozen

layer does decrease with time. This is in contrast to the exact solution

of Section 2.1, with To = Tf, where it can be shown that the heat re-

moved equals the latent heat plus the sensible heat involved in lowering

the temperature of the frozen layer. This limitation is directly associat-

ed with the assumption of a Stefan number of zero.

A correction for the sensible heat can be made by using an effective

latent heat (see Lunardini 1981): %

t(l + c62 1ST + ST/2 )  (A35)

NOMENCLATURE - APPENDIX A

c specific heat

g d&/dT* lop

k thermal conductivity

1 latent heat .
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effective latent heat
e

q rate of energy flow from surface

Qp total heat flow from surface 0

c l c-

ST -(T s - Tf) thaw - (Tf - T.) freeze

t time

T temperature

TfT ,T fusion, initial, surface temperatures
0~ .

x Cartesian coordinate 0

xl x/Xo

X phase change depth

a thermal diffusivity 0

C(P210 - l)ST

x/X

T -T
e0

T -T
s f

x/xo

P density

Subscripts P % e 
% 

,

1,2 different phases of material ?.
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APPENDIX B. THE HEAT BALANCE INTEGRAL METHOD

An approximate method that has been used with good results for solidi-

fication phase change problems involves the concept of the temperature pen- e
etration depth. The integral method introduced by Goodman (1958) is based

on the same concepts as the momentum integral method of the boundary layer

in fluid mechanics (Pohlhausen 1921, von Karman 1921). Consider the semi-

infinite solid shown in Figure Bl. At a --

time t, after the surface temperature has TS

dropped to T., the temperature in the

solid will be disturbed to a depth A(t). C ____________

Beyond this depth, the temperature of the 0 Depth 0

solid remains at the initial temperature 
x+8

To and no energy is transferred 
beyond

this point. The penetration distance

is analogous to the boundary layer thick- Figure BI. Temperature pene- .

ness in fluid mechanics. The solution tration depth.

method is analogous to the momentum in-

tegral method in that the basic equations are satisfied on average over the

volume of thickness A(t), rather than at each point. The conduction equa-

tion is

92T I)T
ata x t(Bl)

Now, this equation is integrated over the distance 6(t). Thus

6(t) a2T 6(t)

0 0x at

The properties are assumed constant and

a r I T dx - a [aT(6,t) aT(O,t)• (B2)

0ax2 ax Ix (2

Leibniz's rule for a general function is

b(t) db da b
dt f(x,t)dx = f(b,t) - f(a,t) - + T (x,t)dxdt a(t) a t
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Then

6 dx-- = T(xt)dx -T(,t) d6
0 at dt0 0 0

Let

- r T(x,t) dx (B3)
0

Then the heat balance integral equation is

S aT(Ot) d 0 (B4)
d--t ax o dt "

This equation is valid if there is no phase change.

EXAMPLE

Consider a semi-infinite region, initially at TO, with a constant

heat flux Q at the surface as shown in Figure B2. The temperature of the

surface increases as the temperature disturbance penetrates into the

solid. The exact solution to this problem is known (Carslaw and Jaeger

(1959) but the heat balance integral (HBI) will be used to illustrate the

method.

The system of equations to solve is

=2 1A t > o (B5)Ax 2  a Atx r

To1,

k T(O,t) = "

kT f -Q (B5a)

At the thermal penetration depth, the tem-

perature is To, and the heat flux is zero; Figure B2. Heat flux at sur-

then face of semi-infinite region.

T(A,t) = TO

T(6,t) = 0 • (B5c)

AX n.

The temperature is assumed to have a quadratic profile satisfying eq

5a,b,c:
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T T + ( (B6)

o 26k X- A) 2  (B

From eq B3, B4 and B6, the differential equation for A is

de 2  0
d-- = 6a (B7)

with the solution

6 = at . (B8)

The HBI technique has reduced the partial differential equation to an

ordinary differential equation with a simple solution. The values of 6 and

t, when the surface temperature reaches the value Tf, are given by

6 = 2k(Tf- To)
m Q

2k (T T )2Nt f s '
m 3aQ2  " *

The exact value for the time tm is

2 2k2 (Tf - T ) ,.
tm = 0.785 aQ2

If a quartic temperature profile is used, additional smoothness relations

at 6 can be used:

3 2T(69t) = aST(S,t) = 0 *

ax2  ax

Then

T T + Q (X-6)

o 4k6_

k24k(Tf -T )
m Q

k 2 (T f - )

t =0.8 aQ2 •
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In general, the accuracy of the approximate solution can be improved by

using higher order temperature profiles; however, the algebraic work also

increases. Unfortunately the accuracy may decrease when a polynomial above

a certain order is chosen. For example, a 10th order polynomial for the .

temperature is no more accurate than the quadratic profile. The

convergence of the method for a given situation is unpredictable, as has

been discussed by Langford (1973).

PHASE CHANGE INTEGRAL EQUATIONS

Consider the case of phase change where the properties of the frozen

region differ from those of the thawed region as shown in Figure B3. There

will then be two integral equations as follows; S

dOl dX 3T1 (X,t) 3T1 (Ot) T0 -
d TfW- L[ ax ax 1=0 (B9)

Tf X

d02  d6 aT2 iX,t)
-To -+ T - -a (B10

dt odt dX +-a2 a -( )

where

1= f T1 (x,t)dx (B1)

0 Figure B3. Heat bal-

ance integral geometry.

02 = f T2 (x,t)dx (B12)x
The following boundary conditions have been used: .

TI (X,t) = T2 (X,t) = Tf

T2 (5,t) = To . •

The solution of a general problem with superheating or subcooling (the

initial temperature not at the freezing temperature) will involve two coup-

led parameters X and . The solution will often be difficult. However,

assume that the initial temperature is Tf. Then the problem reduces to

only one differential equation since the penetration distance . is now E
identical to the phase change depth X:
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d e T dX 3T (X,t) aT1 (O,t) 0B
dt Tf d-t [ ax ax = (B13)

e, f T1 (x,t)dx •

0

The derivation of the method and some applications have been described by

Goodman (1958, 1964).

The heat balance integral equations in cylindrical coordinates are

3T1 (R,t) 3T, (r ,t) R R--
o rj=- f rT, dr - R T ! .

r o o .t d
r0

8T2 (6,t) DT2 (R,t) R-2[ r R r ] rT drdt dR
ffi f r T dr- T2 (6,t) 6- +T R-

16 arad2 f dt

For spherical coordinates 0

T2 aTl(Rt) 2 8T (r 0t)] d R 22 dR
, 1r = . f r T dr - T(R,t) R dR3r 3rdt

r
0

DT (6,t aT (R,t) 62 '" 2 2 2____ d f T 2~S 6 5 2 T dRa 2 Tar Rr ]  dt R r 2
d r - T2(6,t )  2 dt Tf R dt

An alternative form of the spherical heat balance integral equations can be

written as M

af bf bi dbi dai
ai - (- )a ] ) f fldr - f (bit) + fi(ait)

ai •

where fi - r Ti and ai,bi are the limits of the regions to be

integrated.

THE STEFAN PROBLEM

As an example of the method the solution of the Stefp 0-", lem wil I be

given. Goodman (1958) has solved this problem as well as a number of

others. The heat balance integral is eq 13:
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r T+dT

0

The boundary conditions are

Ti(X,t) T Tf (Bl3a)

T1(0,t) =T (Bl3b)
SS

3T1(X,t) dX
k ax =- =. (Bl3c)

Assume that T, is a quadratic function of x:

2
T, T f+ a(x -X) + b(x-X) .(B14)

In order to avoid a second-order differential equation for X, boundary

condition eq Bl3c can be written in the form given by eq 1.33:

2 N-
3T1(X,t) a T1(X,t)

- k, 2 2=pti (B15)
a x ax

The temperature is then given by

T 1 -T +ax Xx t ~T(x-X) 2 B6
f X c1  x ( 6

where c (T -I

3T,(X,t)

ax =a (B17)

aT 1(0,t) 21S T
ax - a +~y (B18)

The coefficient a is given by the solution to
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2 2ta £ 2 T

a + - 2 (- -= 0 • (B 19 )
c i X c 1 .F

The positive root of this equation is chosen since a > 0 for aT (Xt)x > 0.

Then

a = [- 1 + / 1 + 2 S ] (B 2 0 )

The equation for X is 7

a 1  -VT + 2 ST + 2 ST
X d X = 6a, (- ) -(B21)

dt 5 + 2 ST + VI + 2 ST

The solution is then

-V1 + 2 ST + 2 ST  1/2 2,f7
X = T() • (B 2 2 )

5 + 2 ST + V1 + 2 ST

The solution is in the same form as the exact solution for the Neumann

problem (see Section 2.1). The Stefan solution (Section 2.1.3) can also be

put into this form:

X 1/2 ,/2ST  2/-- t (B23) ,J

For Tf - Ts = 5*C and using the properties of ice, c, 0.465 cal/g-°C,

1 - 79.71 cal/g, then ST - 0.0292

Solution Exact Quasi-Static Integral Method % %

y 0.124 0.1208 0.1207

The integral solution is virtually identical to the much simpler

quasi-steady solution and both are -2.7% in error. Of course, the integral

solution is not limited to small Stefan numbers.

This example illustrates a problem with the integral method for a

quadratic temperature approximation. By using different combinations of

the equations, different solutions can be obtained. Equation B22 was ob-
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taned by using eq Bl3c and B18.

When eq Bl3c and B17 are used, then

•t+ 2ST- 1 1/2
X - T 2 (B24)

2

This solution is a generalization of the quasi-steady solution, with a

quadratic temperature in place of the linear temperature profile.

If eq B17 and B18 are used, then

1 + ST - V1 + 2 T  1/2 %
X = 1 6 ( T (B25) i.

2S - 1 + 11 + 2 ST  _

Let us compare these Equations for ST = 0.9205:

Solution Exact Eq B23 EqB_2 Eq B24 Eq 25 I
Value of Y 0.600 0.678 0.638 0.586 0.747

Apparently, eq B24 is the most accurate, with eq B22 close behind. This

quandary can be eliminated if a cubic temperature profile is used, but the

computational work is greatly increased; refer to Goodman (1958) for fur-

ther discussion.

EXTENSION OF HEAT BALANCE INTEGRAL METHOD

The problem of the proper approximation to use for the assumed temper-

ature profile can be eased with a refinement to the heat balance integral

method suggested by Noble (1975) and carried out by Bell (1978). Instead

of following only the phase change and initial
Frozen

temperature penetration depths, any number of -i : 2

isotherms can be followed by writing the heat

balance integral for an arbitrary number of

single phase Neumann problem shown in Figure .

B4. The frozen region will 
be divided into 

% L

two parts where

T = Ta = (Tf + Ts)/2 at x =X 1 . s X

T - Tf at x X. Figure B4. Two-zone S

3frozen region.
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The accuracy increases with an increasing number of subdivisions, but the

computational work also increases. The heat balance integral for region 1

is

aT1 (X1 ,t) aT1 (O,t) jXI dX1ax ax .]a _ d T 1 dx -T- (B26)
at T (B26)

while that for region 2 is

3T2 'i =d tx ) X +TdX 1  B7p t dX dt dX dt
a[p£d a2x dt f T2 dx -Tf j- + Tra -it (B27)

Quadratic temperature approximations are used in each region with 0

T1 = ax2 + bx + c (B28)

T2 = dx2 + ex + f (B29)

The conditions to be satisfied by T, are 0

TI(Xi,t) = Ta (B3Oa)

T1(O,t) = T . (B3Ob)
s 0

and the energy flux continuity relation"'Sd\.

aT1 (X1 ,t) aT2(Xi,t) (3c

ax ax (B30c)

The conditions to be satisfied by T2 are

T2 (X,t) = Tf (B30d)

T2 (Xi,t) = T (B30e)

a

'22
a = -(30f)

ax c ax 2

The equations are solved simultaneously for the six unknowns in eq B28 and

B29. With these relations eq B26 and B27 can then be solved for X, and X.

Bell (1978) showed that the error car be reduced from 6.5% with one

region to 1.2% for two subdivisions. Bell (1979, 1982) also noted that
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calculations suggested that the approximate solution asymptotically ap- "

proached the exact solution as the number of intervals increased. The re-

finement described here can reduce the errors on the heat balance integral

method, but it also tends to negate the simplicity of the method. For more

than two subdivisions or for more complicated boundary conditions it is

likely that numerical solution of the set of simultaneous differential

equations will be required.

Bell and Abbas (1985) used a subdivision of the penetration depth and

solved for the temperatures at each subdivision. They proved that the so-

lution converges to the exact value, at least for a simple problem (with-

out phase change).

COLLOCATION METHOD

The usual heat balance integral equations for two-phase problems, eq

B9 and B10, are coupled and the solution can be difficult. A slight vari-

ation of the heat balance integral method can be used to find an explicit

functional relation between A and X (following Lunardini 1983). This will

uncouple the equations and simplify the solution.

The energy balance at the phase change interface is

Tl(Xt) T2(Xt) dX -

kl Ax -k2  -x = -o0 '- (B31)

If eq B9, B1O and B31 are added together the result will be the over- .

all energy balance for the entire volume of interest:

d . .v
d 101C161 + P2c 2 2 + olX + (° 2c 2 - olc)TfX

-o 2c 2 To(X + ')] = -k1  dx (B32)

The term (o2c 2 - o1cl) TfdX/dt, in eq B32, is the net sensible flux

of enthalpy at the phase change interface resulting from the sudden jump in

the specific heats of the frozen and thawed volumes. This term was omitted .

in a study by Yuen (1980), since Yuen's derivations implicitly assumed that

02C 2 w o1c I at the phase change interface. The retention of the sensible

enthalpy term gives better numerical comparisons to exact solutions. .

Equation B31 can be rewritten as two collocation equations (see Lunar- S

dini 1981) : .,.
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ATl(X,t) AT2(Xlt) A2 TI(X,t) ;T l(X, t)

-kI  + k 2  = -Ol- I -/(B33)

:;Tl(X,t) IT 2(X, t) 12 T2(Xlt) AT2(X,t)-

-k I  + k 2  220a2  / (B34)'Ax 5x Ax x,

For semi-infinite solids the following temperature approximations can be

used:

T1 = Tf + al(x - X) + a 2 (x - X) 2  (B35)

(T O- ) (T - T)
T 2 =T -  2 f (x- X) + f (x - X)2 (B36)

f A ( X

Equation B35, the temperature in the region which has changed phase, %

contains two unknown coefficients. One of these can be found from the

specified boundary condition at x = 0. Combining eq B33-B36 yields

a 2  e21

Equation B34 can be used, with eq B35 and B36 to find an explicit re-

lation between 3 and X.

NOMENCLATURE - APPENDIX B e

c specific heat

k thermal conductivity %

X latent heat of fusion ,

0
Q specified surface heat flux

r radial coordinate

r radius of sphere or cylinder .': %

R phase change radius, cylindrical or spherical coordinates

ST -(Tf -T)

t time
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tm  time for surface temperature to reach Tf %
m%

T temperature %

T +T

Ta 2

Tf ToT s  fusion, initial, surface temperatures

x Cartesian coordinate

X phase change depth

thermal diffusivity 
,

thermal disturbance depth or radius

6 value of 6 when surface temperature reaches Tf
mf

p density

0 integrated temperature

Subscripts

1,2 different phases of material rl-. *

r. %*
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APPENDIX C. BIOT'S VARIATIONAL PRINCIPLE

We will consider the restricted principle for conduction heat transfer

only. Consider a solid with isotropic thermal properties is shown in

Figure Cl.

The conservation of energy for the solid 
A - c

may be written in the familiar form

7j-- div H (Cl)

where C = heat capacity per unit volume T

- scalar temperature field, de- 
T V

fined as T - Ti

= vector field representing the

rate of the local flux of energy Figure Cl. Solid with iso-

t - time. tropic properties.

Fourier's law of conduction is .

= -k grad e (C2)

where k is the thermal conductivity (in general a tensor quantity but

usually reduces to a scalar). Combining eq Cl and C2 yields the well-known

energy equation

div (k grad A)= -C___ (C3)t "

Equation Cl is integrated over time as follows:

j C-- dt = - div dt -div f H dt

Thus 
0

Ce -div H (C4)

9H %" -"

where H f H dt f f - dt is a vector field called the heat displacement.

Clearly eq C4 is an alternative form of the energy conservation equation. %

Equations C2 and C4 make up the fundamental relations for the variational

principle. The advantage of the two separate equations, rather than the .
usual single eq C3, is that it is possible to satisfy approximately the

heat conduction law, eq C2, while maintaining exact energy conservation.
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The temperature and the heat displacement are analogous to the force

(stress) and the displacement (strain) of classical mechanics.

The variational principle is as follows. A variation of the heat dis-

placement of AH associated with a variation of the temperature, AA, is

c = - div ( M) (CS)

Equation C2 is multiplied by 'I_ and integrated over the volume T:

f (grad 0 + ) 6H dT = 0 . (C6)
T

Using the formula for the divergence of the product of a scalar and a

ve ctor , 11 N

J grad 8 - 6 Hdr = div (66H) dT 6- div 6H dT .
T T T

From the divergence theorem,

f (grad e 6H dT e6H n dA-J div 6H dT .

T AT

Equation C6 is then

f (-e div 6H + 6H) dT f 06H * n dA
T A

where n is the outward normal from the boundary surface A.

From eq C5

Ce
2

-J div 6H dT = J CO6dT= 6 f d'r
T T T

A thermal potential is defined as

C21/2 C dT. (C7)
T

Then

6V + J g- H 6H dT f -J 0 no6 H dA . (C8)

The variation principle, eq C8, is a statement of Fourier's conduction law

with energy conservation satisfied automatically as a constraint.

The derivation is also valid for time-dependent thermal conductivity

and moving boundaries (Biot 1970).
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The heat displacement field may be written as A

H = H (Ci, £2 . . . En x, y, z, t) . (C9)

The parameters ei are unknown functions of time and are regarded as •

generalized coordinates representing the field H. The variations in the

field quantities can thus be related to the arbitrary variations in the

generalized coordinates, Sei ,

6H =

V = 'V 6 C T 8n• -dA} (C12)

3Ci

Equation C8 can now be written as

HdT+ e 3H 60i 0 C
3C~ dA}6i.d2

i T i A i ,\'

Since 6c, is arbitrary this leads to kL

8H aH
=v H-- dT = -JndtdA. (C14)

ii (CA3i

The total change of H with respect to time can be written as

_ H 3 i 3H (C14)
dt = i e dt d t

Since the generalized coordinates are functions of time,

9H 3H
- C +i -pi (C15)

It follows directly, from eq C14, that • 0

3i H
= . (C16) -

Let a dissipation function be defined by ?k
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8D 3H ''=.D. , 1 jH •-- dt
k~ d_ (C17)

Using eq C16 this can be written as

k" -- dT f -- 1/2f -(H)2d .

Then 
A

D - 1/2 1 *2 dT (C18)
T

Finally eq C13 may be written as

av + _aD
+ - Qi (C19)

where

SdA (C20)
A 1

From eq C15, if H is a function of only one generalized coordinate and not

an explicit function of time,

Then

(021)

Equation C20 can then be written in the form

d -J - dA (022)
A "

where
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dA -ndA .

Equation C22 is often more convenient to use than eq C20.

If there are n generalized coordinates then eq C19 will lead to a sys-
tem of n differential equations for the unknown qi. It is clear that the O
derivation follows exactly that for the well known Lagrangran equations in

classical mechanics. The physical interpretation is also analogous.

EXAMPLE

Consider a semi-infinite medium, initially at To, which has a sur-

face heat flux q imposed upon it at t > o (see Fig. C2, the same example as

in App. B).

The haat transfer problem is S

a2 e 1 ae (c23)
a at 

e(o~t)
k x = -q (C24) TO

8 (6,t) 0 (C25)

II

Figure C2. Surface heat
ae flux imposed on semi--- (6,t) = 0 (C26) infinite medium.

where

8 fiT -T o

The thermal penetration distance, 6, is chosen for the generalized

coordinate. A quadratic temperature can be assumed as

___ (x - 6)2x (C27)

From eq C4, using H(o) q,

H "q (x - 6)3 + q (t - 1262 28)

h ~ Cx 6)2(x + 26) + q ((C29)
6a6 6a (C2)
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For a one-dimensional problem, eq C20 can be written as

Q - - j 8(o,t) (i-)x=0!on dA - e(6,t) ((--)x 6 dA •
A A

Note that n - while = + Then for a unit area of

material

aH - (,)aH
Q = e(o,t) 1o - (6,t) ..6.6

Since 8 (6,t) o,

aH
Q - e(o,t) (6-)x o 0 (C30)

From eq C7

v. qc 2s  (x 4>
2 4k2 4x

0

Then

S40k2  (C31)
40k2  

.-

The dissipation function, eq C17, leads to

D a 2 67 + ab64 b ] (C32)
2k 35 2

where

a' 0

b " q (1 -6)

Then

2 23D q262 [ 6 8 6135 (C33)

Equation Cl, the variational equation, may now be written as S
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262 r 68 Sa 2 22q2k 5 3 q2 V (C34)

The solution is S

62 84 (C35)1 7t

The time it takes for the surface temperature to reach Tf, or 0o f

Tf -T O is

k2 2

tm Wf Pin) (C36)

in aq

where P(2) - 0.8095. The exact solution for tm (from Carslaw and Jaeger

1959) is P - 0.785. A heat balance integral solution for this problem, see

Appendix B, yields P(2) - 0.667.

The solution accuracy can be improved by a higher order polynominal

for the assumed temperature.

The following table notes the effect of the polynominal order on the

solution accuracy.

P(n) Error Heat balance Error

n Variational (%) integral (Z)

2 0.8095 3.1 0.667 -15.0

4 0.8039 2.4 0.800 1.9

6 0.8442

Go 1.0000

Note that the heat balance integral is more accurate at higher n values. A

Since the H.B.I. method is somewhat easier than the variational method it

may be preferable for semi-infinite systems. For finite systems, however,

the variational method has a distinct advantage due to the nature of the-..

generalized coordinates. 
"5 "

This example points out a characteristic of the variational method. .1

The conduction law, eq C2, cannot be satisfied at both x = 0 and x = . '5

Since the choice was made to satisfy eq C2 at x - 0, it follows that ,

(A) - q (1 - -) - 0.1765 q • / . .
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Ideally A (6) - 0 since I = W 0. For this problem it is preferable to

satisfy eq C2 at x - 0 since the heat flux is applied there. It is

possible to solve this problem using R ( ) = 0 but the accuracy is

significantly lower. For a quadratic temperature the value of P(2) is in

error by 27% but improves to 4% at n - 4.

NOMENCLATURE - APPENDIX C

A surface area

C heat capacity per unit volume .,

D dissipation (thermal) function (Btu-*F)/hr

e unit vector in x direction

H heat displacement vector Btu/ft 2

dH V4A- , local heat flux rate
a-,tM

k thermal conductivity S

n outward unit normal vector

q heat flux rate

Qi thermal force (Btu-0F)/ft

t time

T temperature

T reference temperature 2k

I,.

T initial temperature 0

V thermal potential Btu-OF

x,yz Cartesian coordinates

a thermal diffusivity

6 thermal penetration distance

ei generalized coordinates

A T - Ti , temperature .*.- a

T volume
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APPENDIX D. ERROR FUNCTION AND ERROR INTEGRAL FAMILY

The error functon is defined as

2 x _2

erf x = L I e d8 (DI)
hi- 0

Thus erf I 1 and erf (-x) = -erf x.

The complementary error function is

erfc x = 1 - erf x = e d (D2)

erfc (-x) = 1 - 2__ e f erf x = 2 - erfc x (D3)

VT x
2 -8 -%-,

For small values of x the error function is approximated by -- U--

Go (,n2n+1 2 5erf x = 2 -(-- x 2 +x E +xD4

e -- n (2n + 1) n' - - + + " " " (D4)

For large values of x the following approximation is acceptable (Carslaw

and Jaeger 1959):

-x 2

erf x = i e , 1 + e I (_)n+l 13 ... (2n 1 1) (D5) S= n=0 +2 n+1 2n+3 (D5

DERIVATIVES

The derivative of the error function is

(x) - erf x (D6)

n n
dx

Thus •

0, (x) 2 e-

0 2 (x)= -x e
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INTEGRALS %

The integrals of the error function are often useful. Let

in erfc x i n -  erfc t dt n 1, 2 , • • • (D7)

x

with

i erfc x - erfc x . (D8) %

Then dN,,

i1 erfc x = ierfc x f erfc x dx (D9)

x

i2 erfcxf ( erfc x dx) dx

and so on. Also %"

S2 )n 2
i erfc x = x n! e dt * (DIO)

It can be shown using integration by parts that

2
i erfc x = e - x erfc x

2p 1

_ erfc x = (erfc x - 2x ierfc x)

iA erfc x = e ( + x2 ) - ( + x2 ) erfc x S
6 26/ oz.....

and in general

n n-2 n-I

2n i erfc x i erfc x - 2 x i erfc x. (D1I)
% .. ,

It also follows that

in erfc o 2n (D12)r1)
2r( T* 1)

31. ,°.
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S0

where r is the gamma or fractional function defined by

r (p + 1) -J tp e- t dt p > 0 (D13)
0

r (n + 1) ni if n is a positive integer.

i erfc (-x) 2x + ierfc x

12 erfc (-x) x2 + i2 erfc x
2

in erfc () + ( 1 ) n 
1n erfc x = 2m x (D14)

o 2 m! (n-2m)! -

t-  erfc = (-1) m" 0 ( m > 0 (DI5)m

(_n n+l 2 dn -  -x2  Ni erfc x (-1) * (e (D16)

VW dxn- e )(I) -'-.'
2rf xx 2)+1 .n '

i-I erfc x 2 ierfc x + 2 x erfc x = - 2

-2e-2
i-2 erfc x e-

24 x2 -x L -'
i-S erfc x - (2 x- ) e-x

Also let%

x
In erfx=" I erf d (DI7)

I erf x - erf x

Then

erf x - erf d& x + i erfc x -i erfc o
o

" x + i erfc x
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x x 2 
P ' P _ ,

0 0-erf x ( t d) d x ierfc 0 - erfc x + erfc 0

x 2  1 _ 2
(I+ erfc x

22
2 -, ,..,erf x

The functions in erfc x are tabulated in Table D. - "-

The error function, y = erf n, satisfies the 
equation V, %

d2y+ dy = (D18)

dn2 + ni
' 4f

The function y = in erfc n is a solution to the differential equation
d2

d- + 2n _ 2n = 0 (D19)
dT1 dy

The modified Hermite polynomials are

2
x2 dne - x

H (x)= (-1) e n = 0,1,2, . . (D20)
n dx

xn.

H (x) = (-I) n! ( 2 x )  %

n0 y! r (n-2y+l) .%"-

..:••

[.I n-n-2r
E (x)(2x)
n r 0 r! r(n-2r+l)

n %.

2 m -2mH (x) (-0~ n! (21x) n - 2  )n

H (ix) n! (21) G (x) (D21)
n m m! (n-2m)! nnM=O

,n

2 n-2mx
G (x)= L 2m (D22)

n m0 2 ! (n-2m)! %

n 
%%

1 . _1 • , ..
(x )-= n

Gnx = " e dX (D23) ..
nn it ) ""I
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G (x)=I G 1 +22

1G 1 (x) =x G = - (3x +2x )  '__

n 2n-2m
G2n W 2m  (D24)'

m 0 2 ml (2n-2m)! D2

n 2n+1-2m
G2n+1 m x (D25)

m=O 2 rm (2n+1- 2m)!

G (0) - -n2n2nn +,-

G 2n+ (0)= 0

1 n

G2  (x) 1n (2x)2m (D26)
2 m=O (n-m)t! (2m)! %

n (2x) 2m
G = (n-m)!(2m+)! (D27)
2n+l 2 2 M=o m(2

Gn(-X ) = (-l)n Gn(x) ,;e-% ' .

En(-x) -- En(x) i

Fn(-x) = -F (X)

E2n = G2n

F2n+l = G2n+l

2mF 2mE

d 2m n-2m d 2m n-2m

d2m+lE 2 F 0
n -=F

2m+l 2m n-2m- 1

d x d x

d 2m+F d2mEn

2m+l 2m n-2m-l
d x d x
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a~ -°oi -o- - - ,D a .A - r

E+ 2n -
-F2n+ G 2n+i erfc x (D28)

F 2n G 2n i 2nerfc x

dE dF

dx Fn-i " E n-I

_ [in in.- 

.F(X) erfc(-x) - erfc(x) (D29) '--

(x) G Gxn + n erfc x (D30)

Fo(X) - erf x

F1(x) - x
1 2 x x 

' I~
F2 (x) -- (2x2 + 1) erf x + - e - x

dGo'

F -G 2/;;-I -1 dx

E0  Go -

21 I
E1l G + 4i erfc x -ex

- G O + ierfc x -x + ierfc x(

2 -
% _

2flx 2 2 r (---+ 1

F2  (0) - G2 +- (0) - 2n (0) - 0

F (0) - 0

n0

xn
(4at)2 G t) IO "L (D32)

n t
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(4at) in erfc (-) ItO (D33)

n n S
(4at)2 F (C) t E0 (D34)

n It=O n!

(4Oat) 2 1 n erfc =O 0 (D35)

N
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APPENDIX E. EXPONENTIAL INTEGRAL AND RELATED FUNCTIONS

The following definitions apply:
S -t

E1 (z) - z _- _t dt (larg z1 < w) (E.1) 0

cc -t x t

Ei(x) - e dt= ! etdt (x > O) (E.2)
_x t t 

gIi

x dt

li(x) = t Ei(ln x) (x > 1) (E.3)0lnt

mtt
En(Z) e t dt (n 0,1,2 ; Real z > 0) (E.4)

1 t n  '' I

In eq El it is assumed that the path of integration excludes the ori-

gin and does not cross the negative real axis.

Analytic continuation of the functions for n > 0 yields multi-valued A

functions with branch points at z = 0 and z -. The function li(z), the

logarithmic integral, has an additional branch point at z - i. They are

single-valued functions in the z-plane cut along the negative real axis:

c nS
Ei(x) - y + ln x + x -

e nn!
(-1.) x

E1 (x) - -Ei(-x) -Ye - ln x - xnn!

n-l

These functions are plotted as Figures El and E2. A complete set of values

for the exponential integrals is given in Table El.

.
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1.2

0.8
n-0

..

0.4

to .

0.40 1.29 5.6 0.4 0.8 1.2 1.6

0.50 1 .E~)l 1403 28x 0.876 41584+l x

32.6

E.1 1.256)14 0.,2,3, 5 0 3

0.00 1.00000 6000 1.90000 5600002

0.20 1.05230 8298 0.95214 14833W-

0.25 1.06614 1726 0.94081 575284
0.30 1.08029 5334 0.92973 17075

0.35 1.09477 8451 0.91888 27858

0.40 1.10960 0714 0.90826 26297

0.45 1.12477 2082 0.89786 50778

0.50 1.14030 2841 0.88768 41584_
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Table El. contd.

x Ei (x) E (x)

0.50 0.45421 9905 0.55977 3595
0.55 0.61529 0657 0.50336 4081
0.60 0.76988 1290 0.45437 9503
0.65 0.91938 6468 0.41151 6976
0.70 1.06490 7195 0.37376 8843
0.75 1.20733 2816 0.34034 0813
0.80 1.34739 6548 0.31059 6579
0.85 1.48571 4176 0.28401 9269
0.90 1.62281 1714 0.26018 3939
0.95 1.75914 5612 0.23873 7524
1.00 1.89511 7816 0.21938 3934
1.05 2.03108 7184 0.20187 2813
1.10 2.16737 8280 0.18599 0905 -

1.15 2.30428 8252 0.17155 5354
1.20 2.44209 2285 0.15840 8437
1.25 2.58104 7974 0.14641 3373
1.30 2.72139 8880 0.13545 0958
1.35 2.86337 7453 0.12541 6844
1.40 3.00720 7464 0.11621 9313
1.45 3.15310 6049 0.10777 7440
1.50 3.30128 5449 0.10001 9582
1.55 3.45195 4503 0.09288 2108
1.60 3.60531 9949 0.08630 8334
1.65 3.76158 7569 0.08024 7627
1.70 3.92096 3201 0.07465 4644
1.75 4.08365 3659 0.06948 8685
1.80 4.24986 7557 0.06471 3129
1.85 4.41981 6080 0.06029 4967
1.90 4.59371 3687 0.05620 4378
1.95 4.77177 8785 0.05241 4380
2.00 4.95423 4356 0.04890 0511

x xe- Ei(x) xe xEI(x)

2.0 1.34096 5420 0.72265 7234
2.1 1.37148 6802 0.73079 1502
2.2 1.39742 1992 0.73843 1132
2.3 1.41917 1534 0.74562 2149
2.4 1.43711 8315 0.75240 4829
2.5 1.45162 5159 0.75881 4592
2.6 1.46303 3397 0.76488 2722
2.7 1.47166 2i53 0.77063 6987
2.8 1.47780 8187 0.77610 2123
2.9 1.48174 6162 0.78130 0252
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Table El. contd.

x xe-X Ei WeXE(x)

3.0 1.48372 9204 0.78625 1221 .,._-_

3.1 1.48398 9691 J.79097 2900 S

3.2 1.48274 0191 0.79548 1422

3.3 1.48017 4491 0.79979 1408
3.4 1.47646 8706 0.80391 6127

3.5 1.47178 2389 0.80786 7661

3.6 1.46625 9659 0.81165 7037 -

3.7 1.46003 0313 0.81529 4342

3.8 1.45321 0902 0.81878 8821
3.9 1.44590 5765 0.82214 8967.%

4.0 1.43820 8032 0.82538 2600
4.1 1.43020 0557 0.82849 6926
4.2 1.42195 6813 0.83149 8602
4.3 1.41354 1719 0.83439 3794 0
4.4 1.40501 2424 0.83718 8207

4.5 1.39641 9303 0.83988 7144
4.6 1.38780 5263 0.84249 5539
4.7 1.37920 9093 0.84501 7971

4.8 1.37066 3313 0.84745 8721
4.9 1.36219 6054 0.84982 1778 •
5.0 1.35383 1278 0.85211 0880

5.1 1.34558 9212 0.85432 9519
5.2 1.33748 6755 0.85648 0958

5.3 1.32953 7845 0.85856 8275
5.4 1.32175 3788 0.86059 4348 ye.
5.5 1.31414 3566 0.86256 1885 •

5.6 1.30671 4107 0.86447 3436
5.7 1.29947 0536 0.86633 1399
5.8 1.29241 6395 0.86813 8040 '

5.9 1.28555 3849 0.86989 5494
6.0 1.27888 3860 0.87160 5775
6.1 1.27240 6357 0.87327 0793
6.2 1.26612 0373 0.87489 2347
6.3 1.26002 4184 0.87647 2150

6.4 1.25411 5417 0.87801 1816
6.5 1.24839 1155 0.87951 2881 N.

6.6 1.24284 8032 0.88097 6797
6.7 1.23748 2309 0.88240 4955
6.8 1.23228 9952 0.88379 8662
6.9 1.22726 6684 0.88515 9176
7.0 1.22240 8053 0.88648 7675

7.1 1.21770 9472 0.88778 5294
7.2 1.21316 6264 0.88905 3119

7.3 1.20877 3699 0.89029 2173
7.4 1.20452 7026 0.89150 3440

7.5 1.20042 1500 0.89268 7854
7.6 1.19645 2401 0.89384 6312

7.7 1.19261 5063 0.89497 9666
7.8 1.18890 4881 0.89608 8737 %

7.9 1.18531 7334 0.89717 4302 0

8.0 1.18184 7987 0.89823 7113
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I
Table El. contd.

x xe-XEi(x) xeX E(x)

8.1 1.17849 2509 0.99zi 7888
8.2 I.17524 6676 0.90029 7306
8.3 1.17210 6376 0.90129 6033
8.4 1.16906 7617 0.90227 4695
8.5 1.16612 6526 0.90323 3900

8.6 1.16327 9354 0.90417 4228
8.7 1.16052 2476 0.90509 6235 -6
8.8 1.15785 2390 0.90600 0459 A.
8.9 1.15526 5719 0.90688 7415

9.0 1.15275 9209 0.90775 7602
9.1 1.15032 9724 0.90861 1483
9.2 1.14797 4251 0.90944 9530
9.3 1.14568 9889 0.91027 2177 0
9.4 1.14347 3855 0.91107 9850
9.5 1.14132 3476 0.91187 2958
9.6 1.13923 6185 0.91265 1897
9.7 1.13720 9523 0.91341 7043

9.8 1.13524 1130 0.91416 8766
9.9 1.13332 8746 0.91490 7418 0

10.0 1.13147 0205 0.91563 3339

x xe Ei(x) xex E,(x) <x> 41

0.100 1.13147 021 0.91563 33394 10
0.095 1.12249 671 0.91925 68286 11
0.090 1.11389 377 0.92293 15844 11
0.085 1.10564 739 0.92665 90998 12
0.080 1.09773 775 0.93044 09399 13
0.075 1.09014 087 0.93427 87466 13
0.070 1.08283 054 0.93817 42450 14
0.065 1.07578 038 0.94212 92486 15

0.060 1.06896 548 0.94614 56670 17
0.055 1.06236 365 0.95022 55126 18
0.050 1.05595 591 0.95437 09099 20

0.045 1.04972 640 0.95858 41038 22
0.040 1.04366 194 0.96286 74711 25

0.035 1.03775 135 0.96722 35311 29
0.030 1.03198 503 0.97165 49596 33

0.025 1.02635 451 0.97616 46031 40
0.020 1.02085 228 0.98075 54965 50
0.015 1.01547 157 0.98543 08813 67

0.010 1.01020 625 0.99019 42287 100
0.005 1.00505 077 0.99504 92646 200 .,
0.000 1.00000 000 1.00000 00000 Go -
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